Citation:
ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten,
2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370.
http://doi.org/10.26464/epp2018033
2018, 2(5): 359-370. doi: 10.26464/epp2018033
Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere
1. | School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China |
2. | CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China |
3. | Collaborative Innovation Center of Astronautical Science and Technology, University of Science and Technology of China, Hefei 230026, China |
4. | Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China |
5. | Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire, USA |
6. | Space Science and Applications Group, Los Alamos National Laboratory, Los Alamos, New Mexico, USA |
7. | Space Sciences Division, New Mexico Consortium, Los Alamos, New Mexico, USA |
8. | Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado, USA |
9. | The Aerospace Corporation, Los Angeles, California, USA |
10. | ISR Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA |
Exohiss is a low-frequency structureless whistler-mode emission potentially contributing to the precipitation loss of radiation belt electrons outside the plasmasphere. Exohiss is usually considered the plasmaspheric hiss leaked out of the dayside plasmapause. However, the evolution of exohiss after the leakage has not been fully understood. Here we report the prompt enhancements of exohiss waves following substorm injections observed by Van Allen Probes. Within several minutes, the energetic electron fluxes around 100 keV were enhanced by up to 5 times, accompanied by an up to 10-time increase of the exohiss wave power. These substorm-injected electrons are shown to produce a new peak of linear growth rate in the exohiss band (< 0.1fce). The corresponding path-integrated growth rate of wave power within 10° latitude of the magnetic equatorial plane can reach 13.4, approximately explaining the observed enhancement of exohiss waves. These observations and simulations suggest that the substorm-injected energetic electrons could amplify the preexisting exohiss waves.
Abel, B., and Thorne, R. M. (1998). Electron scattering loss in Earth’s inner magnetosphere: 1. Dominant physical processes. Geophys. J. Res., 103(A2), 2385–2396. https://doi.org/10.1029/97JA02919 |
Albert, J. M., Meredith, N. P., and Horne, R. B. (2009). Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm. J. Geophys. Res., 114(9), A09214. https://doi.org/10.1029/2009JA014336 |
Artemyev, A., Agapitov, O., Breuillard, H., Krasnoselskikh, V., and Rolland, G. (2012). Electron pitch-angle diffusion in radiation belts: The effects of whistler wave oblique propagation. Geophys. Res. Lett., 39(8), L08105. https://doi.org/10.1029/2012GL051393 |
Ashour-Abdalla, M., and Kennel, C. F. (1978). Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res., 83(A4), 1531–1543. https://doi.org/10.1029/JA083iA04p01531 |
Blake, J. B., Carranza, P. A., Claudepierre, S. G., Clemmons, J. H., Crain, W. R. Jr., Dotan, Y., Fennell, J. F., Fuentes, F. H., Galvan, R. M., … Zakrzewski, M. P. (2013). The magnetic electron ion spectrometer (MagEIS) instruments aboard the radiation belt storm probes (RBSP) spacecraft. Space Sci. Rev., 179(1-4), 383–421. https://doi.org/10.1007/s11214-013-9991-8 |
Bortnik, J., Thorne, R. M., and Meredith, N. P. (2008). The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature, 452(7183), 62–66. https://doi.org/10.1038/nature06741 |
Bortnik, J., Li, W., Thorne, R. M., Angelopoulos, V., Cully, C., Bonnell, J., Le Contel, C., and Roux, A. (2009). An observation linking the origin of plasmaspheric hiss to discrete chorus emissions. Science, 324(5928), 775–778. https://doi.org/10.1126/science.1171273 |
Cattell, C. A., Breneman, A. W., Thaller, S. A., Wygant, J. R., Kletzing, C., and Kurth, W. S. (2015). Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study. Geophys. Res. Lett., 42(18), 7273–7281. https://doi.org/10.1002/2015GL065565 |
Chen, L. J., Thorne, R. M., Jordanova, V. K., and Horne, R. B. (2010). Global simulation of magnetosonic wave instability in the storm time magnetosphere. J. Geophys. Res., 115(A11), A11222. https://doi.org/10.1029/2010JA015707 |
Chen, L. J., Thorne, R. M., Bortnik, J., Li, W., Horne, R. B., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., … Fennell, J. F. (2014). Generation of unusually low frequency plasmaspheric hiss. Geophys. Res. Lett., 41(16), 5702–5709. https://doi.org/10.1002/2014GL060628 |
De Boor, C. (1977). Package for calculating with B-Splines. SIAM J. Numer. Anal., 14(3), 441–472. https://doi.org/10.1137/0714026 |
Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson, K. C., Kihara, K. H., … Chen, J. (2013). Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the radiation belt storm probes mission. Space Sci. Rev., 179(1-4), 423–484. https://doi.org/10.1007/s11214-013-9968-7 |
Gao, Z. L., Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., Shen, C., and Wang, S. (2016). Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons. Geophys. Res. Lett., 43(3), 967–977. https://doi.org/10.1002/2016GL067687 |
Golden, D. I., Spasojevic, M., and Inan, U. S. (2009). Diurnal dependence of ELF/VLF hiss and its relation to chorus at L = 2.4. J. Geophys. Res., 114(A5), A05212. https://doi.org/10.1029/2008JA013946 |
Golden, D. I., Spasojevic, M., and Inan, U. S. (2011). Determination of solar cycle variations of midlatitude ELF/VLF chorus and hiss via automated signal detection. J. Geophys. Res., 116(A3), A03225. https://doi.org/10.1029/2010JA016193 |
Green, J. L., Boardsen, S., Garcia, L., Taylor, W. W. L., Fung, S. F., and Reinisch, B. W. (2005). On the origin of whistler mode radiation in the plasmasphere. J. Geophys. Res., 110(A3), A03201. https://doi.org/10.1029/2004JA010495 |
Horne, R. B. (1989). Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation. J. Geophys. Res., 94(A7), 8895–8909. https://doi.org/10.1029/JA094iA07p08895 |
Horne, R. B., and Thorne, R. M. (1998). Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms. Geophys. Res. Lett., 25(15), 3011–3014. https://doi.org/10.1029/98GL01002 |
Horne, R. B., Thorne, R. M., Shprits, Y. Y., Meredith, N. P., Glauert, S. A., Smith, A. J., Kanekal, S. G., Baker, D. N., Engebretson, M. J., … Decreau, P. M. E. (2005). Wave acceleration of electrons in the Van Allen radiation belts. Nature, 437(7056), 227–230. https://doi.org/10.1038/nature03939 |
Kennel, C. (1966). Low-frequency whistler mode. Phys. Fluids, 9(11), 2190–2202. https://doi.org/10.1063/1.1761588 |
Kennel, C. F., and Engelmann, F. (1966). Velocity space diffusion from weak plasma turbulence in a magnetic field. Phys. Fluids, 9(12), 2377–2388. https://doi.org/10.1063/1.1761629 |
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179(1-4), 127–181. https://doi.org/10.1007/s11214-013-9993-6 |
Kurth, W. S., and Gurnett, D. A. (1991). Plasma waves in planetary magnetospheres. J. Geophys. Res., 96(S01), 18977–18991. https://doi.org/10.1029/91JA01819 |
Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S., and Wygant, J. R. (2014). Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen Probes. J. Geophys. Res., 120(2), 904–914. https://doi.org/10.1002/2014JA020857 |
Li, W., Thorne, R. M., Angelopoulos, V., Bonnell, J. W., McFadden, J. P., Carlson, C. W., LeContel, O., Roux, A., Glassmeier, K. H., and Auster, H. U. (2009). Evaluation of whistler-mode chorus intensification on the nightside during an injection event observed on the THEMIS spacecraft. J. Geophys. Res., 114(A1), A00C14. https://doi.org/10.1029/2008JA013554 |
Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., … Thaller, S. A. (2013). An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons. Geophys. Res. Lett., 40(15), 3798–3803. https://doi.org/10.1002/grl.50787 |
Liu, N. G., Su, Z. P., Gao, Z. L., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., Baker, D. N., … Wygant, J. R. (2017). Simultaneous disappearances of plasmaspheric hiss, exohiss, and chorus waves triggered by a sudden decrease in solar wind dynamic pressure. Geophys. Res. Lett., 44(1), 52–61. https://doi.org/10.1002/2016GL071987 |
Liu, N. G., Su, Z. P., Zheng, H. N., Wang, Y. M., and Wang, S. (2018a). Prompt disappearance and emergence of radiation belt magnetosonic waves induced by solar wind dynamic pressure variations. Geophys. Res. Lett., 45(2), 585–594. https://doi.org/10.1002/2017GL076382 |
Liu, N. G., Su, Z. P., Zheng, H. N., Wang, Y. M., and Wang, S. (2018b). Magnetosonic harmonic falling and rising frequency emissions potentially generated by nonlinear wave-wave interactions in the Van Allen radiation belts. Geophys. Res. Lett. https://doi.org/10.1029/2018GL079232 |
Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., and Ukhorskiy, A. (2013). Science objectives and rationale for the radiation belt storm probes mission. Space Sci. Rev., 179(1-4), 3–27. https://doi.org/10.1007/s11214-012-9908-y |
Ni, B. B., Li, W., Thorne, R. M., Bortnik, J., Ma, Q. L., Chen, L. J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., … Claudepierre, S. G. (2014). Resonant scattering of energetic electrons by unusual low-frequency hiss. Geophys. Res. Lett., 41(6), 1854–1861. https://doi.org/10.1002/2014GL059389 |
Nunn, D., Omura, Y., Matsumoto, H., Nagano, I., and Yagitani, S. (1997). The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code. J. Geophys. Res., 102(A12), 27083–27098. https://doi.org/10.1029/97JA02518 |
Omura, Y., Katoh, Y., and Summers, D. (2008). Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res., 113(A4), A04223. https://doi.org/10.1029/2007JA012622 |
Reinsch, C. H. (1967). Smoothing by spline functions. Numer. Mathem., 10(3), 177–183. https://doi.org/10.1007/BF02162161 |
Russell, C. T., Holzer, R. E., and Smith, E. J. (1969). OGO 3 observations of ELF noise in the magnetosphere: 1. Spatial extent and frequency of occurrence. J. Geophys. Res., 74(3), 755–777. https://doi.org/10.1029/JA074i003p00755 |
Santolík, O., Pickett, J. S., Gurnett, D. A., and Storey, L. R. O. (2002). Magnetic component of narrowband ion cyclotron waves in the auroral zone. J. Geophys. Res., 107(A12), SMP 17-1–SMP 17-14. https://doi.org/10.1029/2001JA000146 |
Santolík, O., Parrot, M., and Lefeuvre, F. (2003a). Singular value decomposition methods for wave propagation analysis. Radio Sci., 38(1), 1010. https://doi.org/10.1029/2000RS002523 |
Santolík, O., Gurnett, D. A., Pickett, J. S., Parrot, M., and Cornilleau-Wehrlin, N. (2003b). Spatio-temporal structure of storm-time chorus. J. Geophys. Res., 108(A7), 1278. https://doi.org/10.1029/2002JA009791 |
Santolík, O., Pickett, J. S., Gurnett, D. A., Menietti, J. D., Tsurutani, B. T., and Verkhoglyadova, O. (2010). Survey of Poynting flux of whistler mode chorus in the outer zone. J. Geophys. Res., 115(A7), A00F13. https://doi.org/10.1029/2009JA014925 |
Santolík, O., Kletzing, C. A., Kurth, W. S., Hospodarsky, G., and Bounds, S. R. (2014). Fine structure of large-amplitude chorus wave packets. Geophys. Res. Lett., 41(2), 293–299. https://doi.org/10.1002/2013GL058889 |
Shprits, Y. Y., Thorne, R. M., Horne, R. B., Glauert, S. A., Cartwright, M., Russell, C. T., Baker, D. N., and Kanekal, S. G. (2006). Acceleration mechanism responsible for the formation of the new radiation belt during the 2003 Halloween solar storm. Geophys. Res. Lett., 33(5), L05104. https://doi.org/10.1029/2005GL024256 |
Shprits, Y. Y., Subbotin, D., and Ni, B. B. (2009). Evolution of electron fluxes in the outer radiation belt computed with the VERB code. J. Geophys. Res., 114(A11), A11209. https://doi.org/10.1029/2008JA013784 |
Solomon, J., Cornilleau-Wehrlin, N., Korth, A., and Kremser, G. (1988). An experimental study of ELF/VLF hiss generation in the earth’s magnetosphere. J. Geophys. Res., 93(A3), 1839–1847. https://doi.org/10.1029/JA093iA03p01839 |
Sonwalkar, V. S., and Inan, U. S. (1989). Lightning as an embryonic source of VLF hiss. J. Geophys. Res., 94(A6), 6986–6994. https://doi.org/10.1029/JA094iA06p06986 |
Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., Chan, A. A., Claudepierre, S. G., Clemmons, J. H., … Thorne, R. M. (2013). Science goals and overview of the radiation belt storm probes (RBSP) energetic particle, composition, and thermal plasma (ECT) suite on NASA’s Van Allen probes mission. Space Sci. Rev., 179(1-4), 311–336. https://doi.org/10.1007/s11214-013-0007-5 |
Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S. (2010). STEERB: A three-dimensional code for storm-time evolution of electron radiation belt. J. Geophys. Res., 115(A9), A09208. https://doi.org/10.1029/2009JA015210 |
Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S. (2011). Radiation belt electron dynamics driven by adiabatic transport, radial diffusion, and wave-particle interactions. J. Geophys. Res., 116(A4), A04205. https://doi.org/10.1029/2010JA016228 |
Su, Z. P., Xiao, F. L., Zheng, H. N., He, Z. G., Zhu, H., Zhang, M., Shen, C., Wang, Y. M, Wang, S., … Baker, D. N. (2014a). Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes. Geophys. Res. Lett., 41(2), 229–235. https://doi.org/10.1002/2013GL058912 |
Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., He, Z. G., Shen, C., Shen, C. L., Wang, C. B., … Wygant, J. R. (2014b). Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons. J. Geophys. Res., 119(6), 4266–4273. https://doi.org/10.1002/2014JA019919 |
Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., Shen, C., Zhang, M., Wang, S., Kletzing, C. A., …Wygant, J. R. (2015). Disappearance of plasmaspheric hiss following interplanetary shock. Geophys. Res. Lett., 42(9), 3129–3140. https://doi.org/10.1002/2015GL063906 |
Su, Z. P., Gao, Z. L., Zhu, H., Li, W., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., … Wygant, J. R. (2016). Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013. J. Geophys. Res., 121(7), 6400–6416. https://doi.org/10.1002/2016JA022546 |
Su, Z. P., Liu, N. G., Zheng, H. N., Wang, Y. M., and Wang, S. (2018). Large-amplitude extremely low frequency hiss waves in plasmaspheric plumes. Geophys. Res. Lett., 45(2), 565–577. https://doi.org/10.1002/2017GL076754 |
Summers, D., Thorne, R. M., and Xiao, F. L. (1998). Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere. J. Geophys. Res., 103(A9), 20487–20500. https://doi.org/10.1029/98JA01740 |
Summers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M., Heynderickx, D., and Anderson, R. R. (2002). Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophys. Res. Lett., 29(24), 27-1–27-4. https://doi.org/10.1029/2002GL016039 |
Summers, D., Tong, R. S., and Thorne, R. M. (2009). Limit on stably trapped particle fluxes in planetary magnetospheres. J. Geophys. Res., 114(A10), A10210. https://doi.org/10.1029/2009JA014428 |
Summers, D., Omura, Y., Nakamura, S., and Kletzing, C. A. (2014). Fine structure of plasmaspheric hiss. J. Geophys. Res., 119(11), 9134–9149. https://doi.org/10.1002/2014JA020437 |
Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. E. (1973). Plasmaspheric hiss. J. Geophys. Res., 78(10), 1581–1596. https://doi.org/10.1029/JA078i010p01581 |
Thorne, R. M., Church, S. R., and Gorney, D. J. (1979). On the origin of plasmaspheric hiss: The importance of wave propagation and the plasmapause. J. Geophys. Res., 84(A9), 5241–5247. https://doi.org/10.1029/JA084iA09p05241 |
Thorne, R. M. (2010). Radiation belt dynamics: The importance of wave-particle interactions. Geophys. Res. Lett., 37(22), L22107. https://doi.org/10.1029/2010GL044990 |
Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., Baker, D. N., Spence, H. E., Reeves, G. D., … Kanekal, S. G. (2013). Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 504(7480), 411–414. https://doi.org/10.1038/nature12889 |
Tsyganenko, N. A., and Sitnov, M. I. (2005). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res., 110(A3), A03208. https://doi.org/10.1029/2004JA010798 |
Tu, W. C., Cunningham, G. S., Chen, Y., Morley, S. K., Reeves, G. D., Blake, J. B., Baker, D. N., and Spence, H. (2014). Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen Probes. Geophys. Res. Lett., 41(5), 1359–1366. https://doi.org/10.1002/2013GL058819 |
Varotsou, A., Boscher, D., Bourdarie, S., Horne, R. B., Meredith, N. P., Glauert, S. A., and Friedel, R. H. (2008). Three-dimensional test simulations of the outer radiation belt electron dynamics including electron-chorus resonant interactions. J. Geophys. Res., 113(A12), A12212. https://doi.org/10.1029/2007JA012862 |
Yang, C., Su, Z. P., Xiao, F. L., Zheng, H. N., Wang, Y. M., Wang, S., Spence, H. E., Reeves, G. D., Baker, D. N., … Funsten, H. O. (2016). Rapid flattening of butterfly pitch angle distributions of radiation belt electrons by whistler-mode chorus. Geophys. Res. Lett., 43(16), 8339–8347. https://doi.org/10.1002/2016GL070194 |
Zhu, H., Su, Z. P., Xiao, F. L., Zheng, H. N., Wang, Y. M., Shen, C., Xian, T., Wang, S., Kletzing, C. A., … Baker, D. N. (2015). Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons. Geophys. Res. Lett., 42(4), 1012–1019. https://doi.org/10.1002/2014GL062964 |
[1] |
ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037 |
[2] |
BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001 |
[3] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[4] |
Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060 |
[5] |
ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, JiChun Zhang, 2022: The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study, Earth and Planetary Physics, 6, 149-160. doi: 10.26464/epp2022012 |
[6] |
Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051 |
[7] |
YunXiang Song, ChuXin Chen, 2022: Observation evidence for the entropy switch model of substorm onset, Earth and Planetary Physics, 6, 161-176. doi: 10.26464/epp2022020 |
[8] |
SuPing Duan, Chi Wang, Weining William Liu, ZhaoHai He, 2021: Characteristics of magnetic dipolarizations in the vicinity of the substorm onset region observed by THEMIS, Earth and Planetary Physics, 5, 239-250. doi: 10.26464/epp2021031 |
[9] |
Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055 |
[10] |
LiangQuan Ge, JianKun Zhao, QingXian Zhang, YaoYao Luo, Yi Gu, 2018: Mapping of the lunar surface by average atomic number based on positron annihilation radiation from Chang’e-1, Earth and Planetary Physics, 2, 238-246. doi: 10.26464/epp2018023 |
[11] |
ChunQin Wang, Zheng Chang, XiaoXin Zhang, GuoHong Shen, ShenYi Zhang, YueQiang Sun, JiaWei Li, Tao Jing, HuanXin Zhang, Ying Sun, BinQuan Zhang, 2020: Proton belt variations traced back to Fengyun-1C satellite observations, Earth and Planetary Physics, 4, 611-618. doi: 10.26464/epp2020069 |
[12] |
Ting Feng, Chen Zhou, Xiang Wang, MoRan Liu, ZhengYu Zhao, 2020: Evidence of X-mode heating suppressing O-mode heating, Earth and Planetary Physics, 4, 588-597. doi: 10.26464/epp2020068 |
[13] |
Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048 |
[14] |
Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020 |
[15] |
Yang Li, QuanLiang Chen, JianPing Li, WenJun Zhang, MinHong Song, Wei Hua, HongKe Cai, XiaoFei Wu, 2019: The tropical Pacific cold tongue mode and its associated main ocean dynamical process in CMIP5 models, Earth and Planetary Physics, 3, 400-413. doi: 10.26464/epp2019041 |
[16] |
Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042 |
[17] |
Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics. doi: 10.26464/epp2022038 |
[18] |
Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)