Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. http://doi.org/10.26464/epp2019008

2019, 3(1): 69-84. doi: 10.26464/epp2019008

SOLID EARTH: SEISMOLOGY

Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau

1. 

Key Laboratory of Earthquake Prediction, Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China

2. 

Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China

Corresponding author: Yuan Gao, gaoyuan@cea-ies.ac.cn

Received Date: 2018-12-11
Web Publishing Date: 2019-01-26

In the Southeast Margin of the Tibetan Plateau, low-velocity sedimentary layers that would significantly affect the accuracy of the H-κ stacking of receiver functions are widely distributed. In this study, we use teleseismic waveform data of 475 events from 97 temporary broadband seismometers deployed by ChinArray Phase I to obtain crustal thicknesses and Poisson’s ratios within the Chuxiong-Simao Basin and adjacent area, employing an improved method in which the receiver functions are processed through a resonance-removal filter, and the H-κ stacking is time-corrected. Results show that the crustal thickness ranges from 30 to 55 km in the study area, reaching its thickest value in the northwest and thinning toward southwest, southeast and northeast. The apparent variation of crustal thickness around the Red River Fault supports the view of southeastern escape of the Tibetan Plateau. Relatively thin crustal thickness in the zone between Chuxiong City and the Red River Fault indicates possible uplift of mantle in this area. The positive correlation between crustal thickness and Poisson’s ratio is likely to be related to lower crust thickening. Comparison of results obtained from different methods shows that the improved method used in our study can effectively remove the reverberation effect of sedimentary layers.

Key words: receiver functions, sedimentary layer, southeast margin of the Tibetan Plateau, crustal thickness, Poisson's ratio, Chuxiong-Simao Basin

Ammon, C. J. (1991). The isolation of receiver effects from teleseismic P waveforms. Bull. Seismol. Soc. Am., 81, 2504–2510

Bai, D. H., Unsworth, M. J., Meju, M. A., Ma, X. B., Teng, J. W., Kong, X. R., Sun, Y., Sun, J., Wang, L. F., .. Liu, M. (2010). Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging. Nat. Geosci., 3(5), 358–362. https://doi.org/10.1038/ngeo830

Cassidy, J. F. (1992). Numerical experiments in broadband receiver function analysis. Bull. Seismol. Soc. Am., 82(3), 1453–1474

Cassidy, J. F. (1995). A comparison of the receiver structure beneath stations of the Canadian National Seismograph Network. Can. J. Earth Sci., 32(7), 938–951. https://doi.org/10.1139/e95-079

Cui, Z. Z., Lu, D. Y., Chen, J. P., Zhang, Z. Y., and Huang, L. Y. (1987). The deep structural and tectonic features of the crust in Panxi area. Acta Geophys. Sin., 30(6), 566–580

Deng, J. M., Jin, M. P., Zhao, J. B., Gao, Q., and Chen, J. (2014). Tectonic implications from the distribution map of the crust thickness and Poisson’s ratio in the Yunnan area. Earthq. Res. China, 30(4), 583–596. https://doi.org/10.3969/j.issn.1001-4683.2014.04.011

Deng, Q. D., Zhang, P. Z., Ran, Y. K., Yang, X. P., Min, W., and Chen, L. C. (2003). Active tectonics and earthquake activities in China. Earth Sci. Front., 10(S1), 66–73. https://doi.org/10.3321/j.issn:1005-2321.2003.z1.012

Fu, Y. V., Gao, Y., Li, A. B., Li, L., and Chen, A. G. (2017). Lithospheric structure of the southeastern margin of the Tibetan Plateau from Rayleigh wave tomography. J. Geophys. Res. Solid Earth, 122(6), 4631–4644. https://doi.org/10.1002/2016JB013096

Hansen, S. M., and Schmandt, B. (2017). P and S wave receiver function imaging of subduction with scattering kernels. Geochem.,Geophys.,Geosys., 18(12), 4487–4502. https://doi.org/10.1002/2017GC007120

He, C. S., Wang, C. Y., and Wu, J. P. (2004). S-wave velocity structure inferred from re-ceiver function inversion in Tengchong volcanic area. Acta Seismol. Sin., 17(1), 12–19. https://doi.org/10.1007/BF03191390

He, R. Z., Shang, X. F., Yu, C. Q., Zhang, H. J., and Van der Hilst, R. D. (2014). A unified map of Moho depth and V p/V s ratio of continental China by receiver function analysis. Geophys. J. Int., 199(3), 1910–1918. https://doi.org/10.1093/gji/ggu365

Hu, J. F., Su, Y. J., Zhu, X. G., and Chen, Y. (2005). S-wave velocity and Poisson’s ratio structure of crust in Yunnan and its implication. Sci. China Ser. D:Earth Sci., 48(2), 210–218. https://doi.org/10.1360/03yd0062

Ji, S. C., Wang, Q., and Salisbury, M. H. (2009). Composition and tectonic evolution of the Chinese continental crust constrained by Poisson's ratio. Tectonophysics, 463(1–4), 15–30. https://doi.org/10.1016/j.tecto.2008.09.007

Jordan, T. H., and Frazer, L. N. (1975). Crustal and upper mantle structure from Sp phases. J. Geophys. Res., 80(11), 1504–1518. https://doi.org/10.1029/JB080i011p01504

Kan, R. J., Hu, H. X., Zeng, R. S., Mooney, W. D., and McEvilly, T. V. (1986). Crustal structure of Yunnan Province, People's Republic of China, from seismic refraction profiles. Science, 234(4775), 433–437. https://doi.org/10.1126/science.234.4775.433

Kosarev, G., Kind, R., Sobolev, S. V., Yuan, X., Hanka, W., and Oreshin, S. (1999). Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science, 283(5406), 1306–1309. https://doi.org/10.1126/science.283.5406.1306

Langston, C. A. (1977). Corvallis, Oregon, crustal and upper mantle receiver structure from teleseismic P and S waves. Bull. Seismol. Soc. Am., 67(3), 713–724

Langston, C. A. (1981). Evidence for the subducting lithosphere under southern Vancouver Island and western Oregon from teleseismic P wave conversions. J. Geophys. Res.:Solid Earth, 86(B5), 3857–3866. https://doi.org/10.1029/JB086iB05p03857

Li, R., Tang, J., Dong, Z. Y., Xiao, Q. B., and Zhan, Y. (2014). Deep electrical conductivity structure of the southern area in Yunnan Province. Chinese J. Geophys.(in Chinese) , 57(4), 1111–1122. https://doi.org/10.6038/cjg20140409

Li, Y. H., Wu, Q. J., Zhang, R. Q., Tian, X. B., and Zeng, R. S. (2008). The crust and upper mantle structure beneath Yunnan from joint inversion of receiver functions and Rayleigh wave dispersion data. Phys. Earth Planet. Inter., 170(1–2), 134–146. https://doi.org/10.1016/j.pepi.2008.08.006

Li, Y. H., Wu, Q. J., Tian, X. B., Zhang, R. Q., Pan, J. T., and Zeng, R. S. (2009). Crustal structure in the Yunnan region determined by modeling receiver functions. Chinese J. Geophys., 52(1), 67–80

Li, Y. H., Gao, M. T., and Wu, Q. J. (2014). Crustal thickness map of the Chinese mainland from teleseismic receiver functions. Tectonophysics, 611, 51–60. https://doi.org/10.1016/j.tecto.2013.11.019

Liu, Q. Y., Van Der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., Qi, S. H., Wang, J., Huang, H., and Li, S. C. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci., 7(5), 361–365. https://doi.org/10.1038/ngeo2130

Phinney, R. A. (1964). Structure of the Earth’s crust from spectral behavior of long-period body waves. J. Geophys. Res., 69(14), 2997–3017. https://doi.org/10.1029/JZ069i014p02997

Sheehan, A. F., Abers, G. A., Jones, C. H., and Lerner‐Lam, A. L. (1995). Crustal thickness variations across the Colorado Rocky Mountains from teleseismic receiver functions. J. Geophys. Res.:Solid Earth, 100(B10), 20391–20404. https://doi.org/10.1029/95JB01966

Vinnik, L. P. (1977). Detection of waves converted from P to SV in the mantle. Phys. Earth Planet. Inter., 15(1), 39–45. https://doi.org/10.1016/0031-9201(77)90008-5

Wang, C. Y., and Gang, H. F. (2004). Crustal structure in Tengchong volcano-geothermal area, western Yunnan, China. Tectonophysics, 380(1–2), 69–87. https://doi.org/10.1016/j.tecto.2003.12.001

Wang, C. Y., Lou, H., Lü, Z. Y., Wu, J. P., Chang, L. J., Dai, S. G., You, H. C., Tang, F. T., Zhu, L. P., and Silver, P. (2008). S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau—Deep environment of lower crustal flow. Sci. China Ser. D:Earth Sci., 51(2), 263–274. https://doi.org/10.1007/s11430-008-0008-5

Wang, Q., and Gao, Y. (2014). Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau. Sci. China Earth Sci., 57(10), 2532–2542. https://doi.org/10.1007/s11430-014-4908-2

Wang, W. L., Wu, J. P., Fang, L. H., Lai, G. J., and Cai, Y. (2017). Crustal thickness and Poisson's ratio in southwest China based on data from dense seismic arrays. J. Geophys. Res.:Solid Earth, 122(9), 7219–7235. https://doi.org/10.1002/2017JB013978

Wen, X. Z., Ma, S. L., Xu, X. W., and He, Y. N. (2008). Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Phys. Earth Planet. Inter., 168(1–2), 16–36. https://doi.org/10.1016/j.pepi.2008.04.013

Wu, J. P., Ming, Y. H., and Wang, C. Y. (2001). S wave velocity structure beneath digital seismic stations of Yunnan province inferred from teleseismic receiver function modeling. Chinese J. Geophys.(in Chinese) , 44(2), 223–232. https://doi.org/10.1002/cjg2.135

Xiong, S. B., Zheng, Y., Yin, Z. X., Zeng, X. X., Quan, Y. L., and Sun, K. Z. (1993). The 2-D structure and it’s tectonic implications of the crust in the Lijiang-Pan-Zhihua-Zhehai area. Chinese J. Geophys., 36(4), 434–444

Xu, M. J., Wang, L. S., Liu, J. H., Zhong, K., Li, H., Hu, D. Z., and Xu, Z. (2006). Crust and uppermost mantle structure of the Ailaoshan-Red River fault from receiver function analysis. Sci. China Ser. D:Earth Sci., 49(10), 1043–1052. https://doi.org/10.1007/s11430-006-1043-8

Yeck, W. L., Sheehan, A. F., Anderson, M. L., Erslev, E. A., Miller, K. C., and Siddoway, C. S. (2014). Structure of the Bighorn Mountain region, Wyoming, from teleseismic receiver function analysis: Implications for the kinematics of Laramide shortening. J. Geophys. Res.:Solid Earth, 119(9), 7028–7042. https://doi.org/10.1002/2013JB010769

Yu, Y. Q., Song, J. G., Liu, K. H., and Gao, S. S. (2015). Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions. J. Geophys. Res.:Solid Earth, 120(5), 3208–3218. https://doi.org/10.1002/2014JB011610

Zelt, B. C., and Ellis, R. M. (1999). Receiver-function studies in the Trans-Hudson orogen, Saskatchewan. Can. J. Earth Sci., 36(4), 585–603. https://doi.org/10.1139/e98-109

Zhang, H. S., Tian, X. B., and Teng, J. W. (2009). Estimation of the crustal Vp/Vs Ratio with dipping Moho from receiver functions. Chinese J. Geophys.(in Chinese) , 52(3), 585–595. https://doi.org/10.1002/cjg2.1380

Zhang, X., and Wang, Y. H. (2009). Crustal and upper mantle velocity structure in Yunnan, Southwest China. Tectonophysics, 471(3–4), 171–185. https://doi.org/10.1016/j.tecto.2009.02.009

Zhang, X. M., Hu, J. F., Hu, Y. L., Yang, H. Y., Chen, J., Peng, H. C., and Wen, L. M. (2011). The S-wave velocity structure in the crust and upper mantle as well as the tectonic setting of strong earthquake beneath Yunnan region. Chinese J. Geophys.(in Chinese) , 54(5), 1222–1232. https://doi.org/10.3969/j.issn.0001-5733.2011.05.011

Zhu, L. P., and Kanamori, H. (2000). Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res.:Solid Earth, 105(B2), 2969–2980. https://doi.org/10.1029/1999JB900322

Zhang, Z. J., Bai, Z. M., Wang, C. Y., Teng, J. W., Lü, Q. T., Li, J. L., Liu, Y. F. and Liu, Z. K. (2005). The crustal structure under Sanjiang and its dynamic implications: Revealed by seismic reflection/refraction profile between Zhefang and Binchuan, Yunnan. Sci. China Earth Sci., 48(9), 1329–1336. https://doi.org/10.1360/01YD0567

[1]

HuRong Duan, JunGang Guo, LingKang Chen, JiaShuang Jiao, HeTing Jian, 2022: Vertical crustal deformation velocity and its influencing factors over the Qinghai–Tibet Plateau based on satellite gravity data, Earth and Planetary Physics, 6, 366-377. doi: 10.26464/epp2022034

[2]

Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044

[3]

TianYu Zheng, YuMei He, Yue Zhu, 2022: A new approach for inversion of receiver function for crustal structure in the depth domain, Earth and Planetary Physics, 6, 83-95. doi: 10.26464/epp2022008

[4]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[5]

KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005

[6]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[7]

Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030

[8]

Chang Lai, PengWei Li, JiYao Xu, Wei Yuan, Jia Yue, Xiao Liu, Kogure Masaru, LiLi Qian, 2022: Joint observation of the concentric gravity wave event on the Tibetan Plateau, Earth and Planetary Physics, 6, 219-227. doi: 10.26464/epp2022029

[9]

YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038

[10]

JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017

[11]

RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045

[12]

Jie Gu, YeHui Zhang, Na Yang, Rui Wang, 2020: Diurnal variability of the planetary boundary layer height estimated from radiosonde data, Earth and Planetary Physics, 4, 479-492. doi: 10.26464/epp2020042

[13]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[14]

ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics, 6, 465-473. doi: 10.26464/epp2022041

[15]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[16]

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

[17]

Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023

[18]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[19]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[20]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau

ZiQi Zhang, Yuan Gao