Citation:
Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang,
2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203.
http://doi.org/10.26464/epp2019021
2019, 3(3): 190-203. doi: 10.26464/epp2019021
Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states
1. | State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China |
2. | College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
We report multi-spacecraft observations of ULF waves from Van Allen Probes (RBSP), Magnetospheric Multiscale (MMS), Time History of Events and Macroscale Interactions during Substorm (THEMIS), and Geostationary Operational Environmental Satellites (GOES). On August 31, 2015, global-scale poloidal waves were observed in data from RBSP-B, GOES and THEMIS from L=4 to L=8 over a wide range of magnetic local time (MLT). The polarization states varied towards purely poloidal polarity. In two consecutive orbits over 18 hours, RBSP-A and RBSP-B recorded gradual variation of the polarization states of the poloidal waves; the ratio (|Ba|/|Br|) decreased from 0.82 to 0.13. After the variation of polarization states, the poloidal ULF waves became very purely poloidal waves, localized in both L and MLT. We identify the poloidal wave as second harmonic mode with a large azimuthal wave number (m) of –232. From RBSP particle measurements we find evidence that the high-m poloidal waves during the polarization variations were powered by inward radial gradients and bump-on-tail ion distributions through the N=1 drift-bounce resonance. Most of the time, the dominant free energy source was inward radial gradients, compared with the positive gradient in the energy distribution of the bump-on-tail ion distributions.
Baddeley, L. J., Yeoman, T. K., Wright, D. M., Trattner, K. J., and Kellet, B. J. (2004). A statistical study of unstable particle populations in the global ringcurrent and their relation to the generation of high m ULF waves. Ann. Geophys., 22(12), 4229–4241. https://doi.org/10.5194/angeo-22-4229-2004 |
Berk, H. L., Breizman, B. N., and Pekker, M. (1995). Numerical simulation of bump-on-tail instability with source and sink. Phys. Plasmas, 2(8), 3007–3016. https://doi.org/10.1063/1.871198 |
Chen, L., and Hasegawa, A. (1974). A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance. J. Geophys. Res., 79(7), 1024–1032. https://doi.org/10.1029/JA079i007p01024 |
Chen, L., and Hasegawa, A. (1991). Kinetic theory of geomagnetic pulsations: 1.Internal excitations by energetic particles. J. Geophys. Res. Space Phys., 96(A2), 1503–1512. https://doi.org/10.1029/90JA02346 |
Cheng, C. Z., and Lin, C. S. (1987). Eigenmode analysis of compressional waves in the magnetosphere. Geophys. Res. Lett., 14(8), 884–887. https://doi.org/10.1029/GL014i008p00884 |
Chi, P. J., and Le, G. (2015). Observations of magnetospheric high-m poloidal waves by ST-5 satellites in low earth orbit during geomagnetically quiet times. J. Geophys. Res. Space Phys., 120(6), 4776–4783. https://doi.org/10.1002/2015JA021145 |
Cramm, R., Glassmeier, K. H., Othmer, C., Fornacon, K. H., Auster, H. U., Baumjohann, W., and Georgescu, E. (2000). A case study of a radially polarized Pc4 event observed by the Equator-S satellite. Ann. Geophys., 18(4), 411–415. https://doi.org/10.1007/s00585-000-0411-5 |
Cummings, W. D., O’Sullivan, R. J., and Coleman, P. J. Jr. (1969). Standing Alfvén waves in the magnetosphere. J. Geophys. Res., 74(3), 778–793. https://doi.org/10.1029/JA074i003p00778 |
Dai, L., Takahashi, K., Wygant, J. R., Chen, L., Bonnell, J., Cattell, C. A., Thaller, S., Kletzing, C., Smith, C. W., … Spence, H. E. (2013). Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction. Geophys. Res. Lett., 40(16), 4127–4132. https://doi.org/10.1002/grl.50800 |
Dai, L., Takahashi, K., Lysak, R., Wang, C., Wygant, J. R., Kletzing, C., Bonnell, J., Cattell, C. A., Smith, C. W., … Chen, L. J. (2015). Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes statistical study. J. Geophys. Res. Space Phys., 120(6), 4748–4762. https://doi.org/10.1002/2015JA021134 |
Denton, R. E., and Gallagher, D. L. (2000). Determining the mass density along magnetic field lines from toroidal eigenfrequencies. J. Geophys. Res. Space Phys., 105(A12), 27717–27725. https://doi.org/10.1029/1999JA000397 |
Engebretson, M. J., Zanetti, L. J., Potemra, T. A., and Acuna, M. H. (1986). Harmonically structured ULF pulsations observed by the AMPTE CCE magnetic field experiment. Geophys. Res. Lett., 13(9), 905–908. https://doi.org/10.1029/GL013i009p00905 |
Engebretson, M. J., Murr, D. L., Erickson, K. N., Strangeway, R. J., Klumpar, D. M., Fuselier, S. A., Zanetti, L. J., and Potemra, T. A. (1992). The spatial extent of radial magnetic pulsation events observed in the dayside near synchronous orbit. J. Geophys. Res. Space Phys., 97(A9), 13741–13758. https://doi.org/10.1029/92JA00992 |
Fitzenreiter, R. J., Klimas, A. J., and Scudder, J. D. (1984). Detection of bump-on-tail reduced electron velocity distributions at the electron foreshock boundary. Geophys. Res. Lett., 11(5), 496–499. https://doi.org/10.1029/GL011i005p00496 |
Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson, K. C., Kihara, K. H., Lake, J. E., … Chen, J. (2013). Helium, oxygen, proton, and electron (HOPE) mass spectrometer for the radiation belt storm probes mission. Space Sci. Rev., 179(1–4), 423–484. https://doi.org/10.1007/s11214-013-9968-7 |
Green, J. C., and Kivelson, M. G. (2004). Relativistic electrons in the outer radiation belt: Differentiating between acceleration mechanisms. J. Geophys. Res. Space Phys., 109(A3), A03213. https://doi.org/10.1029/2003JA010153 |
Hughes, W. J., Southwood, D. J., Mauk, B., McPherron, R. L., and Barfield, J. N. (1978). Alfvén waves generated by an inverted plasma energy distribution. Nature, 275(5675), 43–45. https://doi.org/10.1038/275043a0 |
Hughes, W. J. (1994). Magnetospheric ULF waves: a tutorial with a historical perspective. In M. J., Engebretson, et al. (Eds.), Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves. Washington: American Geophysical Union. https://doi.org/10.1029/GM081p0001222 |
Kessel, R. L. (2008). Solar wind excitation of Pc5 fluctuations in the magnetosphere and on the ground. J. Geophys. Res. Space Phys., 113(A4), A04202. https://doi.org/10.1029/2007JA012255 |
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179(1–4), 127–181. https://doi.org/10.1007/s11214-013-9993-6 |
Klimushkin, D. Y. (1998). Resonators for hydromagnetic waves in the magnetosphere. J. Geophys. Res. Space Phys., 103(A2), 2369–2375. https://doi.org/10.1029/97JA02193 |
Klimushkin, D. Y., Mager, P. N., and Glassmeier, K. H. (2004). Toroidal and poloidal alfvén waves with arbitrary azimuthal wavenumbers in a finite pressure plasma in the earth’s magnetosphere. Ann. Geophys., 22(1), 267–287. https://doi.org/10.5194/angeo-22-267-2004 |
Le, G., Chi, P. J., Strangeway, R. J., and Slavin, J. A. (2011). Observations of a unique type of ULF wave by low-altitude Space Technology 5 satellites. J. Geophys. Res. Space Phys., 116(A8), A08203. https://doi.org/10.1029/2011JA016574 |
Le, G., Chi, P. J., Strangeway, R. J., Russell, C. T., Slavin, J. A., Takahashi, K., Singer, H. J., Anderson, B. J., Bromund, K., … Torbert, R. B. (2017). Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm. Geophys. Res. Lett., 44(8), 3456–3464. https://doi.org/10.1002/2017GL073048 |
Leonovich, A. S., and Mazur, V. A. (1995). Magnetospheric resonator for transverse-small-scale standing Alfvén waves. Planet. Space Sci., 43(7), 881–883. https://doi.org/10.1016/0032-0633(94)00206-7 |
Li, L., Zhou, X. Z., Zong, Q. G., Rankin, R., Zou, H., Liu, Y., Chen, X. R., and Hao, Y. X. (2017). Charged particle behavior in localized ultralow frequency waves: Theory and observations. Geophys. Res. Lett., 44(12), 5900–5908. https://doi.org/10.1002/2017GL073392 |
Lindqvist, P. A., Olsson, G., Torbert, R. B., King, B., Granoff, M., Rau, D., Needell, G., Turco, S., Dors, I., … Åhlén, L. (2016). The spin-plane double probe electric field instrument for MMS. Space Sci. Rev., 199(1–4), 137–165. https://doi.org/10.1007/s11214-014-0116-9 |
Liu, W., Sarris, T. E., Li, X., Zong, Q. G., Ergun, R., Angelopoulos, V., and Glassmeier, K. H. (2011). Spatial structure and temporal evolution of a dayside poloidal ULF wave event. Geophys. Res. Lett., 38(19), L19104. https://doi.org/10.1029/2011GL049476 |
Liu, W., Cao, J. B., Li, X., Sarris, T. E., Zong, Q. G., Hartinger, M., Takahashi, K., Zhang, H., Shi, Q. Q., and Angelopoulos, V. (2013). Poloidal ULF wave observed in the plasmasphere boundary layer. J. Geophys. Res. Space Phys., 118(7), 4298–4307. https://doi.org/10.1002/jgra.50427 |
Mager, P. N., and Klimushkin, D. Y. (2013). Giant pulsations as modes of a transverse Alfvénic resonator on the plasmapause. Earth Planets Space, 65(5), 397–409. https://doi.org/10.5047/eps.2012.10.002 |
Mann, I. R., and Wright, A. N. (1995). Finite lifetimes of ideal poloidal Alfvén waves. J. Geophys. Res. Space Phys., 100(A12), 23677–23686. https://doi.org/10.1029/95JA02689 |
Menk, F. W., Orr, D., Clilverd, M. A., Smith, A. J., Waters, C. L., Milling, D. K., and Fraser, B. J. (1999). Monitoring spatial and temporal variations in the dayside plasmasphere using geomagnetic field line resonances. J. Geophys. Res. Space Phys., 104(A9), 19955–19. https://doi.org/10.1029/1999JA900205 |
Min, K., Takahashi, K., Ukhorskiy, A. Y., Manweiler, J. W., Spence, H. E., Singer, H., J., Claudepierre, S. G., Larsen, B. A., Soto-Chavez, B. A., … Cohen, R. J. (2017). Second harmonic poloidal waves observed by Van Allen Probes in the dusk-midnight sector. J. Geophys. Res. Space Phys., 122(3), 3013–3039. https://doi.org/10.1002/2016JA023770 |
Oimatsu, S., Nosé, M., Takahashi, K., Yamamoto, K., Keika, K., Kletzing, C. A., Smith, C. W., MacDowall, R. J., and Mitchell, D. G. (2018). Van Allen probes observations of drift-bounce resonance and energy transfer between energetic ring current protons and poloidal Pc4 wave. J. Geophys. Res. Space Phys., 123(5), 3421–3435. https://doi.org/10.1029/2017JA025087 |
Orr, D., and Matthew, J. A. D. (1971). The variation of geomagnetic micropulsation periods with latitude and the plasmapause. Planet. Space Sci., 19(8), 897–905. https://doi.org/10.1016/0032-0633(71)90141-3 |
Radoski, H. R. (1974). A theory of latitude dependent geomagnetic micropulsations: The asymptotic fields. J. Geophys. Res., 79(4), 595–603. https://doi.org/10.1029/JA079i004p00595 |
Ren, J., Zong, Q. G., Miyoshi, Y., Zhou, X. Z., Wang, Y. F., Rankin, R., Yue, C., Spence, H. E., Funsten, H. O., … Kletzing, C. A. (2017). Low-energy (<200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen probes observation. J. Geophys. Res. Space Phys., 122(10), 9969–9982. https://doi.org/10.1002/2017JA024316 |
Roederer, J. G., and Hones, E. W. Jr. (1970). Electric field in the magnetosphere as deduced from asymmetries in the trapped particle flux. J. Geophys. Res., 75(19), 3923–3926. https://doi.org/10.1029/JA075i019p03923 |
Russell, C. T., Luhmann, J. G., Odera, T. J., and Stuart, W. F. (1983). The rate of occurrence of dayside Pc 3, 4 pulsations: The L-value dependence of the IMF cone angle effect. Geophys. Res. Lett., 10(8), 663–666. https://doi.org/10.1029/GL010i008p00663 |
Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., … Richter, I. (2016). The magnetospheric multiscale magnetometers. Space Sci. Rev., 199(1–4), 189–256. https://doi.org/10.1007/s11214-014-0057-3 |
Sarris, T. E., Wright, A. N., and Li, X. (2009). Observations and analysis of Alfvén wave phase mixing in the Earth’s magnetosphere. J. Geophys. Res. Space Phys., 114(A3), A03218. https://doi.org/10.1029/2008JA013606 |
Schäfer, S., Glassmeier, K. H., Eriksson, P. T. I., Pierrard, V., Fornaçon, K. H., and Blomberg, L. G. (2007). Spatial and temporal characteristics of poloidal waves in the terrestrial plasmasphere: a CLUSTER case study. Ann. Geophys., 25(4), 1011–1024. https://doi.org/10.5194/angeo-25-1011-2007 |
Singer, H. J., Hughes, W. J., and Russell, C. T. (1982). Standing hydromagnetic waves observed by ISEE 1 and 2: Radial extent and harmonic. J. Geophys. Res. Space Phys., 87(A5), 3519–3529. https://doi.org/10.1029/JA087iA05p03519 |
Southwood, D. J., Dungey, J. W., and Etherington, R. J. (1969). Bounce resonant interaction between pulsations and trapped particles. Planet. Space Sci., 17(3), 349–361. https://doi.org/10.1016/0032-0633(69)90068-3 |
Southwood, D. J. (1974). Some features of field line resonances in the magnetosphere. Planet. Space Sci., 22(3), 483–491. https://doi.org/10.1016/0032-0633(74)90078-6 |
Southwood, D. J. (1976). A general approach to low-frequency instability in the ring current plasma. J. Geophys. Res., 81(19), 3340–3348. https://doi.org/10.1029/JA081i019p03340 |
Southwood, D. J., and Kivelson, M. G. (1982). Charged particle behavior in low-frequency geomagnetic pulsations, 2. Graphical approach. J. Geophys. Res. Space Phys., 87(A3), 1707–1710. https://doi.org/10.1029/JA087iA03p01707 |
Takahashi, K., McEntire, R. W., Lui, A. T. Y., and Potemra, T. A. (1990). Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation. J. Geophys. Res. Space Phys., 95(A4), 3717–3731. https://doi.org/10.1029/JA095iA04p03717 |
Takahashi, K., Glassmeier, K. H., Angelopoulos, V., Bonnell, J., Nishimura, Y., Singer, H. J., and Russell, C. T. (2011). Multisatellite observations of a giant pulsation event. J. Geophys. Res. Space Phys., 116(A11), A11223. https://doi.org/10.1029/2011JA016955 |
Takahashi, K., Denton, R. E., Kurth, W., Kletzing, C., Wygant, J., Bonnell, J., Dai, L., Min, K., Smith, C. W., and MacDowall, R. (2015). Externally driven plasmaspheric ulf waves observed by the Van Allen probes. J. Geophys. Res. Space Phys., 120(1), 526–552. https://doi.org/10.1002/2014JA020373 |
Takahashi, K., Claudepierre, S. G., Rankin, R., Mann, I. R., and Smith, C. W. (2018a). Van Allen probes observation of a fundamental poloidal standing Alfvén wave event related to giant pulsations. J. Geophys. Res. Space Phys., 123(6), 4574–4593. https://doi.org/10.1029/2017JA025139 |
Takahashi, K., Oimatsu, S., Nosé, M., Min, K., Claudepierre, S. G., Chan, A., Wygant, J., and Kim, H. (2018b). Van Allen probes observations of second harmonic poloidal standing Alfvén waves. J. Geophys. Res. Space Phys., 123(1), 611–637. https://doi.org/10.1002/2017JA024869 |
Torbert, R. B., Russell, C. T., Magnes, W., Ergun, R. E., Lindqvist, P. A., LeContel, O., Vaith, H., Macri, J., Myers, … Lappalainen, K. (2016). The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products. Space Sci. Rev., 199(1–4), 105–135. https://doi.org/10.1007/s11214-014-0109-8 |
Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., Ludlam, M., Turin, P., Harvey, P. R., … Tao, J. B. (2013). The electric field and waves instruments on the radiation belt storm probes mission. Space Sci. Rev., 179(1–4), 183–220. https://doi.org/10.1007/s11214-013-0013-7 |
Yeoman, T. K., Wright, D. M., Chapman, P. J., and Stockton-Chalk, A. B. (2000). High-latitude observations of ULF waves with large azimuthal wavenumbers. J. Geophys. Res. Space Phys., 105(A3), 5453–5462. https://doi.org/10.1029/1999JA005081 |
Zhao, L. L., Zhang, H., and Zong, Q. G. (2017). Global ULF waves generated by a hot flow anomaly. Geophys. Res. Lett., 44(11), 5283–5291. https://doi.org/10.1002/2017GL073249 |
Zhou, X. Z., Wang, Z. H., Zong, Q. G., Claudepierre, S. G., Mann, I. R., Kivelson, M. G., Angelopoulos, V., Hao, Y. X., Wang, Y. F., and Pu, Z. Y. (2015). Imprints of impulse-excited hydromagnetic waves on electrons in the Van Allen radiation belts. Geophys. Res. Lett., 42(15), 6199–6204. https://doi.org/10.1002/2015GL064988 |
Zong, Q. G., Zhou, X. Z., Li, X., Song, P., Fu, S. Y., Baker, D. N., Pu, Z. Y., Fritz, T. A., Daly, … Réme, H. (2007). Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys. Res. Lett., 34(12), L12105. https://doi.org/10.1029/2007GL029915 |
Zong, Q. G., Zhou, X. Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., Fritz, T. A., Daly, P. W., Dunlop, M., and Pedersen, A. (2009). Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt. J. Geophys. Res. Space Phys., 114(A10), A10204. https://doi.org/10.1029/2009JA014393 |
Zong, Q. G., Rankin, R., and Zhou, X. Z. (2017). The interaction of ultra-low-frequency pc3-5 waves with charged particles in earth’s magnetosphere. Rev. Mod. Plasma Phys., 1(1), 10. https://doi.org/10.1007/s41614-017-0011-4 |
[1] |
Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002 |
[2] |
MingHui Zhu, YiQun Yu, Xing Cao, BinBin Ni, XingBin Tian, JinBin Cao, Vania K. Jordanova, 2022: Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics, Earth and Planetary Physics, 6, 329-338. doi: 10.26464/epp2022037 |
[3] |
JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024 |
[4] |
XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040 |
[5] |
Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022 |
[6] |
WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023 |
[7] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[8] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[9] |
LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004 |
[10] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
[11] |
XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039 |
[12] |
Andrew J Barbour, Nicholas M Beeler, 2021: Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir, Earth and Planetary Physics, 5, 547-558. doi: 10.26464/epp2021034 |
[13] |
GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002 |
[14] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
[15] |
HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032 |
[16] |
Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048 |
[17] |
Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002 |
[18] |
YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics, 6, 135-148. doi: 10.26464/epp2022005 |
[19] |
ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics. doi: 10.26464/epp2022041 |
[20] |
GuangWen Wang, HaiYan Wang, HongQiang Li, ZhanWu Lu, WenHui Li, TaiRan Xu, 2022: Application of active-source surface waves in urban underground space detection: A case study of Rongcheng County, Hebei, China, Earth and Planetary Physics, 6, 385-398. doi: 10.26464/epp2022039 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)