Citation:
ZhiGao Yang, XiaoDong Song,
2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231.
http://doi.org/10.26464/epp2019026
2019, 3(3): 218-231. doi: 10.26464/epp2019026
Ambient noise Love wave tomography of China
1. | Institute of Geophysics, Chinese Earthquake Administration, Beijing 100081, China |
2. | Department of Seismic Networks, China Earthquake Networks Center, Beijing 100045, China |
3. | Department of Geology, University of Illinois at Urbana-Champaign, IL 61801, USA |
4. | School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China |
We first report on the Love wave tomography of China based on ambient noise cross-correlations. We used 3 years of continuous waveform data recorded by 206 broadband seismic stations on the Chinese Mainland and 36 neighboring global stations and obtained Love wave empirical Green’s functions from cross-correlations of the horizontal components. The Love wave group velocity dispersion measurements were used to construct dispersion maps of 8- to 40-s periods, which were then inverted to obtain a three-dimensional horizontally polarized S-wave (SH) velocity structure. The resolution was approximately 4° × 4° and 8° × 8° for eastern and western China, respectively, and extended to a depth of approximately 50 km. The SH model was generally consistent with a previously published vertically polarized S-wave (SV) model and showed large-scale features that were consistent with geological units, such as the major basins and changes in the crustal thickness across the north-south gravity lineament. The SH and SV models also showed substantial differences, which were used to examine the subsurface radial anisotropy. We define the radial anisotropy parameter as
Baig, A. M., Campillo, M., and Brenguier, F. (2009). Denoising seismic noise cross correlations. J. Geophys. Res. Solid Earth, 114(B8), B08310. https://doi.org/10.1029/2008JB006085 |
Bao, X. W., Song, X. D., and Li, J. T. (2015). High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet. Sci. Lett., 417, 132–141. https://doi.org/10.1016/j.jpgl.2015.02.024 |
Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F. C., Moschett, M. P., Shapiro, N. M., and Yang, Y. J. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x |
Bensen, G. D., Ritzwoller, M. H., and Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. J. Geophys. Res. Solid Earth, 113(B5), B05306. https://doi.org/10.1029/2007JB005248 |
Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., and Nercessian, A. (2008). Towards forecasting volcanic eruptions using seismic noise. Nat. Geosci., 1(2), 126–130. https://doi.org/10.1038/ngeo104 |
Chen, L., Cheng, C., and Wei, Z. G. (2009). Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet. Sci. Lett., 286(1-2), 171–183. https://doi.org/10.1016/j.jpgl.2009.06.022 |
Cheng, C., Chen, L., Yao, H. J., Jiang, M. M., and Wang, B. Y. (2013). Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications. Gondwana Res., 23(1), 25–38. https://doi.org/10.1016/j.gr.2012.02.014 |
Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7 |
Efron, B., and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. New York: Chapman and Hall.222 |
Fang, L. H., Wu, J. P., Wang, W. L., Wang, C. Z., and Yang, T. (2013). Love wave tomography from ambient seismic noise in North-China. Chinese J. Geophys., 56(7), 2268–2279. https://doi.org/10.6038/cjg20130714 |
Fu, Y. V., Gao, Y., Li, A. B., Lu, L. Y., Shi, Y. T., and Zhang, Y. (2016). The anisotropic structure in the crust in the northern part of North China from ambient seismic noise tomography. Geophys. J. Int., 204(3), 1649–1661. https://doi.org/10.1093/gji/ggv549 |
Guo, Z., Yang, Y. J., and Chen, Y. J. (2016). Crustal radial anisotropy in Northeast China and its implications for the regional tectonic extension. Geophys. J. Int., 207(1), 197–208. https://doi.org/10.1093/gji/ggw261 |
He, W. G., Chen, Y. S., Ye, Q. D., An, M. J., and Dong, S. W. (2015). Ambient noise Love-wave tomography in Qinling orogeny and surrounding area. Prog. Geophys., 30(1), 47–56. https://doi.org/10.6038/pg2015108 |
Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett., 84(6), 1081–1088. https://doi.org/10.1785/0220110096 |
Huang, H., Yao, H. J., and Van Der Hilst, R. D. (2010). Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry. Geophys. Res. Lett., 37(21), L21310. https://doi.org/10.1029/2010GL044981 |
Laske, G., Masters, G., Ma, Z. T., and Pasyanos, M. (2013). Update on CRUST1.0— A 1-degree global model of earth’s crust. In EGU General Assembly Conference. Vienna: AGU.222 |
Li, H. Y., Su, W., Wang, C. Y., Huang, Z. X., and Lv, Z. Y. (2010). Ambient noise Love wave tomography in the eastern margin of the Tibetan Plateau. Tectonophysics, 491(1-4), 194–204. https://doi.org/10.1016/j.tecto.2009.12.018 |
Li, H. Y., Li, S., Song, X. D., Gong, M., Li, X., and Jia, J. (2012). Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography. Geophys. J. Int., 188(1), 131–143. https://doi.org/10.1111/j.1365-246X.2011.05205.x |
Li, H. Y., Shen, Y., Huang, Z. X., Li, X. F., Gong, M., Shi, D. N., Sandvol, E., and Li, A. B. (2014). The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography. J. Geophys. Res. Solid Earth, 119(3), 1954–1970. https://doi.org/10.1002/2013JB010374 |
Li, L., Li, A. B., Murphy, M. A., and Fu, Y. V. (2016). Radial anisotropy beneath northeast Tibet, implications for lithosphere deformation at a restraining bend in the Kunlun fault and its vicinity. Geochem. Geophys. Geosyst., 17(9), 3674–3690. https://doi.org/10.1002/2016GC006366 |
Lin, F. C., Moschetti, M. P., and Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173(1), 281–298. https://doi.org/10.1111/j.1365-246X.2008.03720.x |
Lin, F. C., Ritzwoller, M. H., and Snieder, R. (2010). Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophys. J. Int., 177(3), 1091–1110. https://doi.org/10.1111/j.1365-246X.2009.04105.x |
Lin, F. C., and Ritzwoller, M. H. (2011). Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure. Geophys. J. Int., 186(3), 1104–1120. https://doi.org/10.1111/j.1365-246X.2011.05070.x |
Lobkis, O. I., and Weaver, R. L. (2001). On the emergence of the Green’s function in the correlations of a diffuse field. J. Acoust. Soc. Am., 110(6), 3011–3017. https://doi.org/10.1121/1.1417528 |
Menzies, M. A., and Xu, Y. G. (1998). Geodynamics of the North China Craton. In M. F. J., Flower, et al. (Eds.), Mantle Dynamics and Plate Interactions in East Asia. Washington: AGU. https://doi.org/10.1029/GD027p0155222 |
Peng, Y. J., Su, W., Zheng, Y. J., and Huang, Z. X. (2002). Love wave seismic tomography of China and vicinal sea areas. Chinese J. Geophys. , 45(6), 792–801. https://doi.org/10.3321/j.issn:0001-5733.2002.06.006 |
Rawlinson, N., and Sambridge, M. (2004a). Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics, 69(5), 1338–1350. https://doi.org/10.1190/1.1801950 |
Rawlinson, N., and Sambridge, M. (2004b). Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int., 156(3), 631–647. https://doi.org/10.1111/j.1365-246X.2004.02153.x |
Rawlinson, N., and Sambridge, M. (2005). The fast marching method: An effective tool for tomographic imaging and tracking multiple phases in complex layered media. Explor. Geophys., 36(4), 341–350. https://doi.org/10.1071/EG05341 |
Schimmel, M., and Paulssen, H. (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys. J. Int., 130(2), 497–505. https://doi.org/10.1111/j.1365-246X.1997.tb05664.x |
Shapiro, N. M., and Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31(7), L07614. https://doi.org/10.1029/2004GL019491 |
Shapiro, N. M., Ritzwoller, M. H., Molnar, P., and Levin, V. (2004). Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 305(5681), 233–236. https://doi.org/10.1126/science.1098276 |
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339 |
Shen, W. S., Ritzwoller, M. H., Kang, D., Kim, Y. K., Lin, F. C., Ning, J. Y., Wang, W. T., Zheng, Y., and Zhou, L. Q. (2016). A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys. J. Int., 206(2), 954–979. https://doi.org/10.1093/gji/ggw175 |
Sun, X. L., Song, X. D., Zheng, S. H., Yang, Y. J., and Ritzwoller, M. H. (2010). Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography. Earthq. Sci., 23(5), 449–463. https://doi.org/10.1007/s11589-010-0744-4 |
Tichelaar, B. W., and Ruff, L. J. (1989). How good are our best models? Jackknifing, bootstrapping, and earthquake depth. Eos Trans. Am. Geophys. Union, 70(20), 593–606. https://doi.org/10.1029/89EO00156 |
Weaver, R. L., and Lobkis, O. I. (2004). Diffuse fields in open systems and the emergence of the Green’s function (L). J. Acoust. Soc. Am., 116(5), 2731–2734. https://doi.org/10.1121/1.1810232 |
Xie, J. Y., Ritzwoller, M. H., Shen, W. S., Yang, Y. J., Zheng, Y., and Zhou, L. Q. (2013). Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. J. Geophys. Res. Solid Earth, 118(8), 4226–4252. https://doi.org/10.1002/jgrb.50296 |
Xu, X. M., Ding, Z. F., Ye, Q. D., and Lv, M. M. (2015). The crustal and upper mantle structure beneath the South-North seismic zone from the inversion of Love wave phase velocity. Chinese J. Geophys. , 58(11), 3928–3940. https://doi.org/10.6038/cjg20151104 |
Yang, Y. J., Ritzwoller, M. H., Levshin, A. L., and Shapiro, N. M. (2007). Ambient noise Rayleigh wave tomography across Europe. Geophys. J. Int., 168(1), 259–274. https://doi.org/10.1111/j.1365-246X.2006.03203.x |
Yang, Y. J., Zheng, Y., Chen, J., Zhou, S. Y., Celyan, S., Sandvol, E., Tilmann, F., Priestley, K., Hearn, T. M., … Ritzwoller, M. H. (2010). Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochem. Geophys. Geosyst., 11(8), Q08010. https://doi.org/10.1029/2010GC003119 |
Yao, H. J., Van Der Hilst, R. D., and De Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys. J. Int., 166(2), 732–744. https://doi.org/10.1111/j.1365-246X.2006.03028.x |
Yao, H. J., Beghein, C., Van Der Hilst, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—II. Crustal and upper-mantle structure. Geophys. J. Int., 173(1), 205–219. https://doi.org/10.1111/j.1365-246X.2007.03696.x |
Zhang, J., and Yang, X. N. (2013). Extracting surface wave attenuation from seismic noise using correlation of the coda of correlation. J. Geophys. Res. Solid Earth, 118(5), 2191–2205. https://doi.org/10.1002/jgrb.50186 |
Zheng, D. C., and Wang, J. (2017). Love wave tomography in Sichuan-Yunnan area from ambient noise. Acta Seismol. Sin. , 39(5), 633–647. |
Zheng, S. H., Sun, X. L., Song, X. D., Yang, Y. J., and Ritzwoller, M. H. (2008). Surface wave tomography of China from ambient seismic noise correlation. Geochem. Geophys. Geosyst., 9(5), Q05020. https://doi.org/10.1029/2008GC001981 |
Zheng, Y., Shen W. S., Zhou, L. Q., Yang, Y. J., Xie, Z. J., and Ritzwoller, M. H. (2011). Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. J. Geophys. Res. Solid Earth, 116(B12), B12312. https://doi.org/10.1029/2011JB008637 |
Zhou, L. Q., Xie, J. Y., Shen, W. S., Zheng, Y., Yang, Y. J., Shi, H. X., and Ritzwoller, M. H. (2012). The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys. J. Int., 189(3), 1565–1583. https://doi.org/10.1111/j.1365-246X.2012.05423.x |
Zhu, R. X., Chen, L., Wu, F. Y., and Liu, J. L. (2011). Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci., 54(6), 789–797. https://doi.org/10.1007/s11430-011-4203-4 |
[1] |
Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003 |
[2] |
Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026 |
[3] |
Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048 |
[4] |
XiHui Shao, HuaJian Yao, Ying Liu, HongFeng Yang, BaoFeng Tian, LiHua Fang, 2022: Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China, Earth and Planetary Physics, 6, 204-212. doi: 10.26464/epp2022010 |
[5] |
BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001 |
[6] |
WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033 |
[7] |
Wei Zhang, Mei Tang, ZhenWei Niu, 2022: The anisotropy of hcp iron under inner core conditions: the effect of light elements, Earth and Planetary Physics. doi: 10.26464/epp2022035 |
[8] |
BinBin Liao, XiaoDong Chen, JianQiao Xu, JiangCun Zhou, HePing Sun, 2022: Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method, Earth and Planetary Physics, 6, 241-247. doi: 10.26464/epp2022025 |
[9] |
TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004 |
[10] |
LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028 |
[11] |
Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043 |
[12] |
JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042 |
[13] |
XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041 |
[14] |
YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou, 2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125. doi: 10.26464/epp2019015 |
[15] |
Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025 |
[16] |
Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049 |
[17] |
Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044 |
[18] |
Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047 |
[19] |
Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027 |
[20] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)