Citation:
Liao, Y. J., Chen, Q. L., and Zhou, X, (2019). Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring. Earth Planet. Phys., 3(6), 489–500.. http://doi.org/10.26464/epp2019050
2019, 3(6): 489-500. doi: 10.26464/epp2019050
Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring
School of Atmospheric Sciences, Chengdu University of Information Technology and Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu 610225, China |
Water vapor in the stratosphere makes a significant contribution to global climate change by altering the radiative energy budget of the Earth’s climate system. Although many previous studies have shown that the El Niño–Southern Oscillation (ENSO) has significant effects on the water vapor content of the stratosphere in terms of the annual or seasonal mean, a comprehensive analysis of the seasonal evolution of these effects is still required. Using reanalysis data and satellite observations, we carried out a composite analysis of the seasonal evolution of stratospheric water vapor during El Niño/La Niña peaks in winter and decays in spring. The ENSO has a distinct hysteresis effect on water vapor in the tropical lower stratosphere. The El Niño/La Niña events moisten/dry out the tropical lower stratosphere in both winter and spring, whereas this wetting/dehydration effect is more significant in spring. This pattern is due to a warmer temperature in the upper troposphere and lower stratosphere during the El Niño spring phase, which causes more water vapor to enter the stratosphere, and vice versa for La Niña. This delayed warming/cooling in the lower stratosphere during the El Niño/La Niña decay in spring leads to the seasonal evolution of ENSO effects on water vapor in the lower stratosphere.
Abalos, M., Legras, B., Ploeger, F., and Randel, W. J. (2015). Evaluating the advective Brewer-Dobson circulation in three reanalyses for the period 1979–2012. J. Geophys. Res. Atmos., 120(15), 7534–7554. https://doi.org/10.1002/2015JD023182 |
Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 489). San Diego: Academic Press.222 |
Brewer, A. W. (1949). Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Quart. J. Roy. Meteor. Soc., 75(326), 351–363. https://doi.org/10.1002/qj.49707532603 |
Calvo, N., Garcia, R. R., Randel, W. J., and Marsh, D. R. (2010). Dynamical mechanism for the increase in tropical upwelling in the lowermost tropical stratosphere during warm ENSO events. J. Atmos. Sci., 67(7), 2331–2340. https://doi.org/10.1175/2010JAS3433.1 |
Camp, C. D., and Tung, K. K. (2007). Stratospheric polar warming by ENSO in winter: A statistical study. Geophys. Res. Lett., 34(4), L04809. https://doi.org/10.1029/2006GL028521 |
Chen, Q. L., and Chen, Y. J. (2007). Stratospheric residual circulation and its temporal and spatial evolution. Chin. J. Atmos. Sci. (in Chinese) |
Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., and Rosenlof, K. H. (2013). Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA, 110(45), 18087–18091. https://doi.org/10.1073/pnas.1310344110 |
Edmon, H. J. Jr., Hoskins, B. J., and McIntyre, M. E. (1980). Eliassen-Palm cross sections for the troposphere. J. Atmos. Sci., 37(12), 2600–2616. https://doi.org/10.1175/1520-0469(1980)037<2600:EPCSFT>2.0.CO;2 |
Forster, P. M. D. F. (2001). Assessing impact of stratospheric water vapor on climate. In AGU Fall Meeting. AGU Fall Meeting Abstracts. Washington: AGU.222 |
Forster, P. M. D. F., and Shine, K. P. (2002). Assessing the climate impact of trends in stratospheric water vapor. Geophys. Res. Lett., 29(6), 10–1. https://doi.org/10.1029/2001GL013909 |
Free, M., and Seidel, D. J. (2009). Observed El Niño–Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res. Atmos., 114(D23), D23108. https://doi.org/10.1029/2009JD012420 |
Fueglistaler, S., and Haynes, P. H. (2005). Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res. Atmos., 110(D24), D24108. https://doi.org/10.1029/2005JD006019 |
García-Herrera, R., Calvo, N., Garcia, R. R., and Giorgetta, M. A. (2006). Propagation of ENSO temperature signals into the middle atmosphere: A comparison of two general circulation models and ERA-40 reanalysis data. J. Geophys. Res. Atmos., 111(D6), D06101. https://doi.org/10.1029/2005JD006061 |
Garfinkel, C. I., and Hartmann, D. L. (2007). Effects of the El Niño–Southern oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J. Geophys. Res. Atmos., 112(D19), D19112. https://doi.org/10.1029/2007JD008481 |
Garfinkel, C. I., Gordon, A., Oman, L. D., Li, F., Davis, S., and Pawson, S. (2018). Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO. Atmos. Chem. Phys., 18(7), 4597–4615. https://doi.org/10.5194/acp-18-4597-2018 |
Garfinkel, C. I., Hurwitz, M. M., Oman, L. D., and Waugh, D. W. (2013a). Contrasting effects of Central Pacific and Eastern Pacific El Niño on stratospheric water vapor. Geophys. Res. Lett., 40(15), 4115–4120. https://doi.org/10.1002/grl.50677 |
Garfinkel, C. I., Waugh, D. W., Oman, L. D., Wang, L., and Hurwitz, M. M. (2013b). Temperature trends in the tropical upper troposphere and lower stratosphere: Connections with sea surface temperatures and implications for water vapor and ozone. J. Geophys. Res. Atmos., 118(17), 9658–9672. https://doi.org/10.1002/jgrd.50772 |
Geller, M. A., Zhou, X. L., and Zhang, M. H. (2002). Simulations of the interannual variability of stratospheric water vapor. J. Atmos. Sci., 59(6), 1076–1085. https://doi.org/10.1175/1520-0469(2002)059<1076:SOTIVO>2.0.CO;2 |
Gettelman, A., Randel, W. J., Massie, S., and Wu, F. (2001). El Niño as a natural experiment for studying the tropical tropopause region. J. Climate., 14(16), 3375–3392. https://doi.org/10.1175/1520-0442(2001)014<3375:ENOAAN>2.0.CO;2 |
Grise, K. M., and Thompson, D. W. J. (2012). Equatorial planetary waves and their signature in atmospheric variability. J. Atmos. Sci., 69(3), 857–874. https://doi.org/10.1175/JAS-D-11-0123.1 |
Hamilton, K. (1993). An examination of observed Southern Oscillation effects in the Northern Hemisphere stratosphere. J. Atmos. Sci., 50(20), 3468–3474. https://doi.org/10.1175/1520-0469(1993)050<3468:AEOOSO>2.0.CO;2 |
Hatsushika, H., and Yamazaki, K. (2003). Stratospheric drain over Indonesia and dehydration within the tropical tropopause layer diagnosed by air parcel trajectories. J. Geophys. Res. Atmos., 108(D19), 4610. https://doi.org/10.1029/2002JD002986 |
Hegglin, M. I., Plummer, D. A., Shepherd, T. G., Scinocca, J. F., Anderson, J., Froidevaux, L., Funke, B., Hurst, D., Rozanov, A., … Weigel K. (2014). Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nat. Geos., 7(10), 768–776. https://doi.org/10.1038/ngeo2236 |
Holton, J. R., Haynes, P. H., McIntyre, M. E., Douglass, A. R., Rood, R. B., and Pfister, L. (1995). Stratosphere-troposphere exchange. Rev. Geophys., 33(4), 403–439. https://doi.org/10.1029/95RG02097 |
Konopka, P., Ploeger, F., Tao, M. C., and Riese, M. (2016). Zonally resolved impact of ENSO on the stratospheric circulation and water vapor entry values. J. Geophys. Res. Atmos., 121(19), 11486–11501. https://doi.org/10.1002/2015JD024698 |
Labitzke, K., and Van Loon, H. (1989). Association between the 11-yr Solar Cycle, the QBO, and the atmosphere. Part Ⅲ: Aspects of the association. J. Climate, 2(6), 554–565. https://doi.org/10.1175/1520-0442(1989)002<0554:ABTYSC>2.0.CO;2 |
Manzini, E., Giorgetta, M. A., Esch, M., Kornblueh, L., and Roeckner, E. (2006). The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model. J. Climate., 19(16), 3863–3881. https://doi.org/10.1175/JCLI3826.1 |
Maycock, A. C., and Shine, K. P. (2012). Stratospheric water vapor and climate: Sensitivity to the representation in radiation codes. J. Geophys. Res. Atmos., 117(D13), D13102. https://doi.org/10.1029/2012JD017484 |
Oltmans, S. J., and Hofmann, D. J. (1995). Increase in lower-stratospheric water vapour at a mid-latitude Northern Hemisphere site from 1981 to 1994. Nature, 374(6518), 146–149. https://doi.org/10.1038/374146a0 |
Oltmans, S. J., Vömel, H., Hofmann, D. J., Rosenlof, K. H., and Kley, D. (2000). The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado. Geophys. Res. Lett., 27(21), 3453–3456. https://doi.org/10.1029/2000GL012133 |
Randel, W. J., Garcia, R. R., Calvo, N., and Marsh, D. (2009). ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett., 36, L15822. https://doi.org/10.1029/2009GL039343 |
Randel, W. J. (1987). A study of planetary waves in the southern winter troposphere and stratosphere. Part Ⅰ: Wave structure and vertical propagation. J. Atmos. Sci., 44(6), 917–935. https://doi.org/10.1175/1520-0469(1987)044<0917:ASOPWI>2.0.CO;2 |
Randel, W. J., Garcia, R., and Wu, F. (2008). Dynamical balances and tropical stratospheric upwelling. J. Atmos. Sci., 65(11), 3584–3595. https://doi.org/10.1175/2008JAS2756.1 |
Randel, W. J., Wu, F., Vömel, H., Nedoluha, G. E., and Forster, P. (2006). Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation. J. Geophys. Res. Atmos., 111(D12), D12312. https://doi.org/10.1029/2005JD006744 |
Rao, J., and Ren, R. C. (2016). Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. observations. J. Geophys. Res. Atmos., 121(15), 9000–9016. https://doi.org/10.1002/2015JD024520 |
Rao, J., and Ren, R. C. (2017). Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere. Adv. Atmos. Sci., 34(9), 1121–1133. https://doi.org/10.1007/s00376-017-6260-x |
Rao, J., and Ren, R. C. (2018). Varying stratospheric responses to tropical Atlantic SST forcing from early to late winter. Climate Dyn., 51(5-6), 2079–2096. https://doi.org/10.1007/s00382-017-3998-x |
Rao, J., Garfinkel, C. I., and Ren, R. C. (2019a). Modulation of the northern winter stratospheric El Niño–Southern oscillation teleconnection by the PDO. J. Climate, 32(18), 5761–5783. https://doi.org/10.1175/JCLI-D-19-0087.1 |
Rao, J., Ren, R. C., Xia, X., Shi, C. H., and Guo, D. (2019b). Combined impact of El Niño–Southern Oscillation and Pacific decadal oscillation on the northern winter stratosphere. Atmosphere, 10(4), 211. https://doi.org/10.3390/atmos10040211 |
Rao, J., Yu, Y. Y., Guo, D., Shi, C. H., Chen, D., and Hu, D. Z. (2019c). Evaluating the Brewer-Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses. Earth Planet. Phys., 3(2), 166–181. https://doi.org/10.26464/epp2019012 |
Ren, R. C., Rao, J., Wu, G. X., and Cai, M. (2017). Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Climate Dyn., 48(9-10), 2859–2879. https://doi.org/10.1007/s00382-016-3238-9 |
Roscoe, H. K. (2006). The Brewer–Dobson circulation in the stratosphere and mesosphere-Is there a trend?. Adv. Space Res., 38(11), 2446–2451. https://doi.org/10.1016/j.asr.2006.02.078 |
Rosenlof, K. H. (1995). Seasonal cycle of the residual mean meridional circulation in the stratosphere. J. Geophys. Res. Atmos., 100(D3), 5173–5191. https://doi.org/10.1029/94JD03122 |
Rosenlof, K. H. (2015). STRATOSPHERIC CHEMISTRY TOPICS| stratospheric water vapor. In G. R. North, et al. (Eds.), Encyclopedia of Atmospheric Sciences (pp. 250-256). Amsterdam: Elsevier.222 |
Rosenlof, K. H., and Reid, G. C. (2008). Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res. Atmos., 113(D6), D06107. https://doi.org/10.1029/2007JD009109 |
Rosenlof, K. H., Oltmans, S. J., Kley, D., Russell, J. M., Chiou, E.-W., Chu, W. P., Johnson, D. G., Kelly, K. K., Michelsen, H. A., … McCormick, M. P. (2001). Stratospheric water vapor increases over the past half-century. Geophys. Res. Lett., 28(7), 1195–1198. https://doi.org/10.1029/2000GL012502 |
Sassi, F., Kinnison, D., Boville, B. A., Garcia, R. R., and Roble, R. (2004). Effect of El Niño–Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res. Atmos., 109(D17), 17108. https://doi.org/10.1029/2003JD004434 |
Scaife, A. A., Butchart, N., Jackson, D. R., and Swinbank, R. (2003). Can changes in ENSO activity help to explain increasing stratospheric water vapor?. Geophys. Res. Lett., 30(17), 1880. https://doi.org/10.1029/2003GL017591 |
Simpson, I. R., Shepherd, T. G., and Sigmond, M. (2011). Dynamics of the lower stratospheric circulation response to ENSO. J. Atmos. Sci., 68(11), 2537–2556. https://doi.org/10.1175/JAS-D-11-05.1 |
Solomon, S., Rosenlof, K. H., Portmann, R. W., Daniel, J. S., Davis, S. M., Sanford, T. J., and Plattner, G. (2010). Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327(5970), 1219–1223. https://doi.org/10.1126/science.1182488 |
Stenke, A., Dameris, M., and Grewe, V. (2006). Simulated trends of stratospheric water vapor from 1960 to 2020 and impact on ozone chemistry. Tagung. DLR.222 |
Taguchi, M., and Hartmann, D. L. (2006). Increased occurrence of stratospheric sudden warmings during El Niño as simulated by WACCM. J. Climate, 19(3), 324–332. https://doi.org/10.1175/JCLI3655.1 |
Van Loon, H., and Labitzke, K. (1987). The Southern Oscillation. Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon. Wea. Rev., 115(2), 357–369. https://doi.org/10.1175/1520-0493(1987)115<0357:TSOPVT>2.0.CO;2 |
Xie, F., Li, J. P., Tian, W. S., Feng, J., and Huo, Y. (2012). Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12(11), 5259–5273. https://doi.org/10.5194/acp-12-5259-2012 |
Xie, F., Tian, W. S., Li, J. P. (2011). The effect of ENSO activity on lower stratospheric water vapor. Atmos. Chem. Phys. Discuss., 11(2), 4141–4166. https://doi.org/10.5194/acpd-11-4141-2011 |
Zhou, X., Li, J. P., Xie, F., Chen, Q. L., Ding, R. Q., Zhang, W. X., and Li, Y. (2018). Does extreme El Niño have a different effect on the stratosphere in boreal winter than its moderate counterpart?. J. Geophys. Res. Atmos., 123(6), 3071–3086. https://doi.org/10.1002/2017JD028064 |
[1] |
Zheng Ma, Yun Gong, ShaoDong Zhang, JiaHui Luo, QiHou Zhou, ChunMing Huang, KaiMing Huang, 2020: Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019, Earth and Planetary Physics, 4, 493-503. doi: 10.26464/epp2020044 |
[2] |
Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062 |
[3] |
ChengWei Yang, ChengHu Wang, GuiYun Gao, Pu Wang, 2022: Cretaceous–Cenozoic regional stress field evolution from borehole imaging in the southern Jinzhou area, western Liaoning, North China Craton, Earth and Planetary Physics, 6, 123-134. doi: 10.26464/epp2022001 |
[4] |
Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009 |
[5] |
Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021 |
[6] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[7] |
Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031 |
[8] |
Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055 |
[9] |
ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics, 4, 472-478. doi: 10.26464/epp2020046 |
[10] |
Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002 |
[11] |
GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002 |
[12] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[13] |
Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040 |
[14] |
Ting Feng, Chen Zhou, Xiang Wang, MoRan Liu, ZhengYu Zhao, 2020: Evidence of X-mode heating suppressing O-mode heating, Earth and Planetary Physics, 4, 588-597. doi: 10.26464/epp2020068 |
[15] |
XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052 |
[16] |
Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013 |
[17] |
HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006 |
[18] |
Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li, 2021: Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin, Earth and Planetary Physics, 5, 532-546. doi: 10.26464/epp2021026 |
[19] |
Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics, 6, 305-312. doi: 10.26464/epp2022038 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)