Citation:
Gong, Y., Ma, Z., Li, C., Lv, X. D., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Yu, Y., and Li, G. Z. (2020). Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017. Earth Planet. Phys., 4(3), 274–284. http://doi.org/10.26464/epp2020033
2020, 4(3): 274-284. doi: 10.26464/epp2020033
Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017
1. | School of Electronic Information, Wuhan University, Wuhan 430079, China |
2. | Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan 430079, China |
3. | State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China |
4. | Electrical and Computer Engineering Department, Miami University, Oxford, Ohio, USA |
5. | Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
This study presents an analysis of the quasi-16-day wave (Q16DW) at three stations in the middle latitudes by using a meteor radar chain in conjunction with Aura Microwave Limb Sounder temperature data and MERRA2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2) reanalysis data from 2008 to 2017. The radar chain consists of three meteor radar stations located at Mohe (MH, 53.5°N, 122.3°E), Beijing (BJ, 40.3°N, 116.2°E), and Wuhan (WH, 30.5°N, 114.6°E). The Q16DW wave exhibits similar seasonal variation in the neutral wind and temperature, and the Q16DW amplitude is generally strong during winter and weak around summer. The Q16DW at BJ was found to have secondary enhancement around September in the zonal wind, which is rarely reported at similar latitudes. The latitudinal variations of the Q16DW in the neutral wind and temperature are quite different. The Q16DW at BJ is the most prominent in both neutral wind components among the three stations and the Q16DW amplitudes at MH and WH are comparable, whereas the wave amplitude in temperature decreases with decreasing latitude. The quasi-geostrophic refractive index squared at the three stations in the period from 2008 to 2017 was revealed. The results indicate that the Q16DW in the mesosphere and lower thermosphere (MLT) at MH has a limited contribution from the lower atmosphere. Around March and October, the Q16DW in the troposphere at BJ can propagate upward into the MLT region, whereas at WH, the contribution to the Q16DW in the MLT region is largely from the mesosphere.
Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics. London: Academic Press.222 |
Araújo, L. R., Lima, L. M., Batista, P. P., Clemesha, B. R., and Takahashi, H. (2014). Planetary wave seasonality from meteor wind measurements at 7.4°S and 22.7°S. Ann. Geophys., 32(5), 519–531. https://doi.org/10.5194/angeo-32-519-2014 |
Charney, J. G., and Drazin, P. G. (1961). Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res., 66(1), 83–109. https://doi.org/10.1029/JZ066i001p00083 |
Day, K. A., Hibbins, R. E., and Mitchell, N. J. (2011). Aura MLS observations of the westward-propagating s=1, 16-day planetary wave in the stratosphere, mesosphere and lower thermosphere. Atmos. Chem. Phys., 11(9), 4149–4161. https://doi.org/10.5194/acp-11-4149-2011 |
Day, K. A., Taylor, M. J., and Mitchell, N. J. (2012). Mean winds, temperatures and the 16- and 5-day planetary waves in the mesosphere and lower thermosphere over Bear Lake Observatory (42° N, 111° W). Atmos. Chem. Phys., 12(3), 1571–1585. https://doi.org/10.5194/acp-12-1571-2012 |
Espy, P. J., Stegman, J., and Witt, G. (1997). Interannual variations of the quasi-16-day oscillation in the polar summer mesospheric temperature. J. Geophys. Res.: Atmos., 102(D2), 1983–1990. https://doi.org/10.1029/96JD02717 |
Forbes, J. M., Hagan, M. E., Miyahara, S., Vial, F., Manson, A. H., Meek, C. E., and Portnyagin, Y. I. (1995). Quasi 16-day oscillation in the mesosphere and lower thermosphere. J. Geophys. Res.: Atmos., 100(D5), 9149–9163. https://doi.org/10.1029/94JD02157 |
Gan, Q., Yue, J., Chang, L. C., Wang, W. B., Zhang, S. D., and Du, J. (2015). Observations of thermosphere and ionosphere changes due to the dissipative 6.5-day wave in the lower thermosphere. Ann. Geophys., 33(7), 913–922. https://doi.org/10.5194/angeo-33-913-2015 |
Gong, Y., Li, C., Ma, Z., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Li, G. Z., and Ning, B. Q. (2018). Study of the quasi-5-day wave in the MLT region by a meteor radar chain. J. Geophys. Res.: Atmos., 123(17), 9474–9487. https://doi.org/10.1029/2018JD029355 |
Gong, Y., Wang, H. L., Ma, Z., Zhang, S. D., Zhou, Q. H., Huang, C. M., and Huang, K. M. (2019). A statistical analysis of the propagating quasi 16-day waves at high latitudes and their response to sudden stratospheric warmings from 2005 to 2018. J. Geophys. Res.: Atmos., 124(23), 12617–12630. https://doi.org/10.1029/2019JD031482 |
Guharay, A., Prado Batista, P., Clemesha, B. R., Buriti, R. A., and Schuch, N. J. (2016). Latitudinal variability of the quasi-16-day wave in the middle atmosphere over Brazilian stations. Ann. Geophys., 34(4), 411–419. https://doi.org/10.5194/angeo-34-411-2016 |
Hocking, W. K., Fuller, B., and Vandepeer, B. (2001). Real-time determination of meteor-related parameters utilizing modern digital technology. J. Atmos. Sol.-Terr. Phys., 63(2-3), 155–169. https://doi.org/10.1016/S1364-6826(00)00138-3 |
Huang, C. M., Zhang, S. D., Chen, G., Zhang, S. Y., and Huang, K. M. (2017). Planetary wave characteristics in the lower atmosphere over Xianghe (117.00°E, 39.77°N), China, revealed by the Beijing MST radar and MERRA data. J. Geophys. Res.: Atmos., 122(18), 9745–9758. https://doi.org/10.1002/2017JD027029 |
Huang, Y. Y., Zhang, S. D., Li, C. Y., Li, H. J., Huang, K., and Huang, C. M. (2017). Annual and interannual variations in global 6.5DWs from 20–110 km during 2002–2016 observed by TIMED/SABER. J. Geophys. Res.: Space Phys., 122(8), 8985–9002. https://doi.org/10.1002/2017JA023886 |
Jacobi, C., Schminder, R., and Kürschner, D. (1998a). Planetary wave activity obtained from long-period (2–18 days) variations of mesopause region winds over Central Europe (52°N, 15°E). J. Atmos. Sol.-Terr. Phys., 60(1), 81–93. https://doi.org/10.1016/S1364-6826(97)00117-X |
Jacobi, C., Schminder, R., and Kürschner, D. (1998b). Long-period (12–25 days) oscillations in the summer mesopause region as measured at Collm (52°N, 15°E) and their dependence on the equatorial quasi-biennial oscillation. Contrib. Atmos. Phys., 71(4), 461–464. |
Jiang, G. Y., Xiong, J. G., Wan, W. X., Ning, B. Q., Liu, L. B., Vincent, R. A., and Reid, I. (2005). The 16-day waves in the mesosphere and lower thermosphere over Wuhan (30.6°N, 114.5°E) and Adelaide (35°S, 138°E). Adv. Space Res., 35(11), 2005–2010. https://doi.org/10.1016/j.asr.2005.03.011 |
John, S. R., and Kumar, K. K. (2016). Global normal mode planetary wave activity: a study using TIMED/SABER observations from the stratosphere to the mesosphere-lower thermosphere. Climate Dyn., 47(12), 3863–3881. https://doi.org/10.1007/s00382-016-3046-2 |
Kingsley, S. P., Muller, H. G., Nelson, L., and Scholefield, A. (1978). Meteor winds over Sheffield (53°N, 2°W). J. Atmos. Terr. Phys., 40(8), 917–922. https://doi.org/10.1016/0021-9169(78)90143-5 |
Kishore, P., Namboothiri, S. P., Igarashi, K., Gurubaran, S., Sridharan, S., Rajaram, R., and Ratnam, M. V. (2004). MF radar observations of 6.5-day wave in the equatorial mesosphere and lower thermosphere. J. Atmos. Sol.-Terr. Phys., 66(6-9), 507–515. https://doi.org/10.1016/j.jastp.2004.01.026 |
Li, G. Z., Ning, B. Q., Hu, L. H., Chu, Y. H., Reid, I. M., and Dolman, B. K. (2012). A comparison of lower thermospheric winds derived from range spread and specular meteor trail echoes. J. Geophys. Res. Space Phys., 117(A3), A03310. https://doi.org/10.1029/2011JA016847 |
Lima, L. M., Batista, P. P., Clemesha, B. R., and Takahashi, H. (2006). 16-day wave observed in the meteor winds at low latitudes in the southern hemisphere. Adv. Space Res., 38(11), 2615–2620. https://doi.org/10.1016/j.asr.2006.03.033 |
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A., Manney, G. L., Valle, L. F., Pumphrey, H. C., Santee, M. L., … Lay, R. R. (2017). EOS MLS version 4.2x Level 2 data quality and description document. Jet Propulsion Laboratory, California Institution of Technology, https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf222 |
Luo, Y., Manson, A. H., Meek, C. E., Meyer, C. K., and Forbes, J. M. (2000). The quasi 16-day oscillations in the mesosphere and lower thermosphere at Saskatoon (52°N, 107°W), 1980–1996. J. Geophys. Res.: Atmos., 105(D2), 2125–2138. https://doi.org/10.1029/1999JD900979 |
Luo, Y., Manson, A. H., Meek, C. E., Thayaparan, T., MacDougall, J., and Hocking, W. K. (2002a). The 16-day wave in the mesosphere and lower thermosphere: simultaneous observations at Saskatoon (52°N, 107°W) and London (43°N, 81°W), Canada. J. Atmos. Sol.-Terr. Phys., 64(8–11), 1287–1307. https://doi.org/10.1016/S1364-6826(02)00042-1 |
Luo, Y., Manson, A. H., Meek, C. E., Meyer, C. K., Burrage, M. D., Fritts, D. C., Hall, C. M., Hocking, W. K., MacDougall, J., … Vincent, R. A. (2002b). The 16-day planetary waves: multi-mf radar observations from the arctic to equator and comparisons with the HRDI measurements and the GSWM modelling results. Ann. Geophys., 20(5), 691–709. https://doi.org/10.5194/angeo-20-691-2002 |
Ma, Z., Gong, Y., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Yu, Y., Li, G. Z., Ning, B. Q., and Li, C. (2017). Responses of quasi 2 day waves in the MLT region to the 2013 SSW revealed by a meteor radar chain. Geophys. Res. Lett., 44(18), 9142–9150. https://doi.org/10.1002/2017GL074597 |
Ma, Z., Gong, Y., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Dong, W. J., Li, G. Z., and Ning, B. Q. (2018). Study of mean wind variations and gravity wave forcing via a meteor radar chain and comparison with HWM-07 results. J. Geophys. Res.: Atmos., 123(17), 9488–9501. https://doi.org/10.1029/2018JD028799 |
Malinga, S. B., and Poole, L. M. G. (2002a). The 16-day variation in the mean flow at Grahamstown (33.3° S, 26.5° E). Ann. Geophys., 20(12), 2027–2031. https://doi.org/10.5194/angeo-20-2027-2002 |
Malinga, S. B., and Poole, L. M. G. (2002b). The 16-day variation in tidal amplitudes at Grahamstown (33.3° S, 26.5° E). Ann. Geophys., 20(12), 2033–2038. https://doi.org/10.5194/angeo-20-2033-2002 |
Manson, A. H., and Meek, C. E. (1986). Dynamics of the middle atmosphere at Saskatoon (52°N, 107°W): A spectral study during 1981, 1982. J. Atmos. Sol.-Terr. Phys., 48(11–12), 1039–1055. https://doi.org/10.1016/0021-9169(86)90025-5 |
Manson, A. H., Meek, C. E., Chshyolkova, T., Avery, S. K., Thorsen, D., MacDougall, J. W., Hocking, W., Murayama, Y., Igarashi, K., … Kishore, P. (2004). Longitudinal and latitudinal variations in dynamic characteristics of the MLT (70–95 km): a study involving the CUJO network. Ann. Geophys., 22(2), 347–365. https://doi.org/10.5194/angeo-22-347-2004 |
McDonald, A. J., Hibbins, R. E., and Jarvis, M. J. (2011). Properties of the quasi 16 day wave derived from EOS MLS observations. J. Geophys. Res. Atmos., 116(D6), D06112. https://doi.org/10.1029/2010JD014719 |
Mitchell, N. J., Middleton, H. R., Beard, A. G., Williams, P. J. S., and Muller, H. G. (1999). The 16-day planetary wave in the mesosphere and lower thermosphere. Ann. Geophys., 17(11), 1447–1456. https://doi.org/10.1007/s00585-999-1447-9 |
Miyoshi, Y. (1999). Numerical simulation of the 5-day and 16-day waves in the mesopause region. Earth Planets Space, 51(7-8), 763–772. https://doi.org/10.1186/BF03353235 |
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J. (2015). Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev., 8(5), 1339–1356. https://doi.org/10.5194/gmd-8-1339-2015 |
Namboothiri, S. P., Kishore, P., and Igarashi, K. (2002). Climatological studies of the quasi 16-day oscillations in the mesosphere and lower thermosphere at Yamagawa (31.2°N, 130.6°E). Japan. Ann. Geophys., 20(8), 1239–1246. https://doi.org/10.5194/angeo-20-1239-2002 |
Pancheva, D. V., Mukhtarov, P. J., Mitchell, N. J., Fritts, D. C., Riggin, D. M., Takahashi, H., Batista, P. P., Clemesha, B. R., Gurubaran, S., and Ramkumar, G. (2008). Planetary wave coupling (5-6-day waves) in the low-latitude atmosphere-ionosphere system. J. Atmos. Sol.-Terr. Phys., 70(1), 101–122. https://doi.org/10.1016/j.jastp.2007.10.003 |
Randel, W. J. (1988). The seasonal evolution of planetary-waves in the Southern-Hemisphere stratosphere and troposphere. Q. J. R. Meteorol. Soc., 114(484), 1385–1409. https://doi.org/10.1002/qj.49711448403 |
Riggin, D. M., Liu, H. L., Lieberman, R. S., Roble, R. G., Russell III, J. M., Mertens, C. J., Mlynczak, M. G., Pancheva, D., Franke, S. J., … Vincent, R. A. (2006). Observations of the 5-day wave in the mesosphere and lower thermosphere. J. Atmos. Sol.-Terr. Phys., 68(3-5), 323–339. https://doi.org/10.1016/j.jastp.2005.05.010 |
Salby, M. L. (1981a). Rossby normal modes in nonuniform background configurations. Part I: Simple fields. J. Atmos. Sci., 38(9), 1803–1826. https://doi.org/10.1175/1520-0469(1981)038<1803:RNMINB>2.0.CO;2 |
Salby, M. L. (1981b). Rossby normal modes in nonuniform background configurations. Part II. Equinox and solstice conditions. J. Atmos. Sci., 38(9), 1827–1840. https://doi.org/10.1175/1520-0469(1981)038<1827:RNMINB>2.0.CO;2 |
Schwartz, M. J., Lambert, A., Manney, G. L., Read, W. G., Livesey, N. J., Froidevaux, L., Ao, C. O., Bernath, P. F., Boone, C. D., … Wu, D. L. (2008). Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J. Geophys. Res. Atmos., 113(D15), D15S11. https://doi.org/10.1029/2007JD008783 |
Smith, A. K. (2003). The origin of stationary planetary waves in the upper mesosphere. J. Atmos. Sci., 60(24), 3033–3041. https://doi.org/10.1175/1520-0469(2003)060<3033:toospw>2.0.co;2 |
Takahashi, H., Shiokawa, K., Egito, F., Murayama, Y., Kawamura, S., and Wrasse, C. M. (2013). Planetary wave induced wind and airglow oscillations in the middle latitude MLT region. J. Atmos. Sol.-Terr. Phys., 98, 97–104. https://doi.org/10.1016/j.jastp.2013.03.014 |
Wang, J. Y., Yi, W., Chen, T. D., and Xue, X. H. (2020). Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation. Earth Planet. Phys., 4(3), 1–11. |
Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., … Dodge, R. (2006). The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens., 44(5), 1075–1092. https://doi.org/10.1109/TGRS.2006.873771 |
Williams, C. R., and Avery, S. K. (1992). Analysis of long-period waves using the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska. J. Geophys. Res.: Atmos., 97(D18), 20855–20861. https://doi.org/10.1029/92JD02052 |
Wu, D. L., Hays, P. B., and Skinner, W. R. (1995). A least squares method for spectral analysis of space-time series. J. Atmos. Sci., 52(20), 3501–3511. https://doi.org/10.1175/1520-0469(1995)052<3501:alsmfs>2.0.co;2 |
Yu, Y., Wan, W. X., Ning, B. Q., Liu, L. B., Wang, Z. G., Hu, L. H., and Ren, Z. P. (2013). Tidal wind mapping from observations of a meteor radar chain in December 2011. J. Geophys. Res.: Space Phys., 118(5), 2321–2332. https://doi.org/10.1029/2012JA017976 |
[1] |
JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024 |
[2] |
Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013 |
[3] |
YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics, 6, 135-148. doi: 10.26464/epp2022005 |
[4] |
Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020 |
[5] |
GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002 |
[6] |
Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022 |
[7] |
BaoZhu Zhou, XiangHui Xue, Wen Yi, HaiLun Ye, Jie Zeng, JinSong Chen, JianFei Wu, TingDi Chen, and XianKang Dou, 2022: A Comparison of MLT Wind between Meteor Radar Chain and SD-WACCM Results, Earth and Planetary Physics. doi: 10.26464/epp2022040 |
[8] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[9] |
Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007 |
[10] |
JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024 |
[11] |
YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050 |
[12] |
Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060 |
[13] |
ChunQin Wang, Zheng Chang, XiaoXin Zhang, GuoHong Shen, ShenYi Zhang, YueQiang Sun, JiaWei Li, Tao Jing, HuanXin Zhang, Ying Sun, BinQuan Zhang, 2020: Proton belt variations traced back to Fengyun-1C satellite observations, Earth and Planetary Physics, 4, 611-618. doi: 10.26464/epp2020069 |
[14] |
WeiLong Rao, WenKe Sun, 2022: Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data, Earth and Planetary Physics, 6, 228-240. doi: 10.26464/epp2022021 |
[15] |
Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006 |
[16] |
ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061 |
[17] |
Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040 |
[18] |
ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049 |
[19] |
XiaoYan Bai, KaiMing Huang, ShaoDong Zhang, ChunMing Huang, Yun Gong, 2021: Anomalous changes of temperature and ozone QBOs in 2015−2017 from radiosonde observation and MERRA-2 reanalysis, Earth and Planetary Physics, 5, 280-289. doi: 10.26464/epp2021028 |
[20] |
Ting Luo, Wei Leng, 2021: Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab, Earth and Planetary Physics, 5, 290-295. doi: 10.26464/epp2021027 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)