Citation:
Liu, Y., Zhou, C., Xu, T., Tang, Q., Deng, Z. X., Chen, G. Y., and Wang, Z. K. (2021). Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region. Earth Planet. Phys., 5(5), 462–482. http://doi.org/10.26464/epp2021025
2021, 5(5): 462-482. doi: 10.26464/epp2021025
Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region
1. | Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China |
2. | National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China |
This paper briefly reviews ionospheric irregularities that occur in the E and F regions at mid-latitudes. Sporadic E (ES) is a common ionospheric irregularity phenomenon that is first noticed in the E layer. ES mainly appears during daytime in summer hemispheres, and is formed primarily from neutral wind shear in the mesosphere and lower thermosphere (MLT) region. Field-aligned irregularity (FAI) in the E region is also observed by Very High Frequency (VHF) radar in mid-latitude regions. FAI frequently occurs after sunset in summer hemispheres, and spectrum features of E region FAI echoes suggest that type-2 irregularity is dominant in the nighttime ionosphere. A close relationship between ES and E region FAI implies that ES may be a possible source of E region FAI in the nighttime ionosphere. Strong neutral wind shear, steep ES plasma density gradient, and a polarized electric field are the significant factors affecting the formation of E region FAI. At mid-latitudes, joint observational experiments including ionosonde, VHF radar, Global Positioning System (GPS) stations, and all-sky optical images have revealed strong connections across different scales of ionospheric irregularities in the nighttime F region, such as spread F (SF), medium-scale traveling ionospheric disturbances (MSTID), and F region FAI. Observations suggest that different scales of ionospheric irregularities are generally attributed to the Perkins instability and subsequently excited gradient drift instability. Nighttime MSTID can further evolve into small-scale structures through a nonlinear cascade process when a steep plasma density gradient exists at the bottom of the F region. In addition, the effect of ionospheric electrodynamic coupling processes, including ionospheric E-F coupling and inter-hemispheric coupling on the generation of ionospheric irregularities, becomes more prominent due to the significant dip angle and equipotentiality of magnetic field lines in the mid-latitude ionosphere. Polarized electric fields can map to different ionospheric regions and excite plasma instabilities which form ionospheric irregularities. Nevertheless, the mapping efficiency of a polarized electric field depends on the ionospheric background and spatial scale of the field.
Abdu, M. A., Batista, I. S., and Bittencourt, J. A. (1981). Some characteristics of spread F at the magnetic equatorial station Fortaleza. J. Geophys. Res., 86(A8), 6836–6842. https://doi.org/10.1029/ja086ia08p06836 |
Abdu, M. A., Sobral, J. H. A., Nelson, O. R., and Batista, I. S. (1985). Solar cycle related range type spread-F occurrence characteristics over equatorial and low latitude stations in Brazil. J. Atmos. Terr. Phys., 47(8-10), 901–905. https://doi.org/10.1016/0021-9169(85)90065-0 |
Abdu, M. A. (2001). Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F. J. Atmos. Sol. Terr. Phys., 63(9), 869–884. https://doi.org/10.1016/S1364-6826(00)00201-7 |
Abdu, M. A., Souza, J. R., Batista, I. S., Fejer, B. G., and Sobral, J. H. A. (2013). Sporadic E layer development and disruption at low latitudes by prompt penetration electric fields during magnetic storms. J. Geophys. Res., 118(5), 2639–2647. https://doi.org/10.1002/jgra.50271 |
Abdu, M. A., De Souza, J. R., Batista, I. S., Santos, A. M., Sobral, J. H. A., Rastogi, R. G., and Chandra, H. (2014). The role of electric fields in sporadic E layer formation over low latitudes under quiet and magnetic storm conditions. J. Atmos. Sol. Terr. Phys., 115-116, 95–105. https://doi.org/10.1016/j.jastp.2013.12.003 |
Arras, C., Wickert, J., Beyerle, G., Heise, S., Schmidt, T., and Jacobi, C. (2008). A global climatology of ionospheric irregularities derived from GPS radio occultation. Geophys. Res. Lett., 35(14), L14809. https://doi.org/10.1029/2008GL034158 |
Basu, S., and Kelley, M. C. (1979). A review of recent observations of equatorial scintillations and their relationship to current theories of F region irregularity generation. Radio Sci., 14(3), 471–485. https://doi.org/10.1029/RS014i003p00471 |
Basu, S., Basu, S., Ganguly, S., and Klobuchar, J. A. (1981). Generation of kilometer scale irregularities during the midnight collapse at Arecibo. J. Geophys. Res., 86(A9), 7607–7616. https://doi.org/10.1029/JA086iA09p07607 |
Basu, S., MacKenzie, E., and Basu, S. (1988). Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci., 23(3), 363–378. https://doi.org/10.1029/RS023i003p00363 |
Bernhardt, P. A. (2002). The modulation of sporadic-E layers by Kelvin-Helmholtz billows in the neutral atmosphere. J. Atmos. Sol. Terr. Phys., 64(12-14), 1487–1504. https://doi.org/10.1016/S1364-6826(02)00086-X |
Booker, H. G., and Wells, H. W. (1938). Scattering of radio waves by the F-region of the ionosphere. J. Geophys. Res., 43(3), 249–256. https://doi.org/10.1029/TE043i003p00249 |
Bowman G. G. (1960). Some aspects of sporadic-E at mid-latitudes. Planet. Space Sci., 2(4), 195–202. https://doi.org/10.1016/0032-0633(60)90016-7 |
Bowman, G. G. (1990). A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelectr., 42(2), 109–138. https://doi.org/10.5636/jgg.42.109 |
Bowman, G. G. (1991). Ionospheric frequency spread and its relationship with range spread in mid-latitude regions. J. Geophys. Res., 96(A6), 9745–9753. https://doi.org/10.1029/91JA00389 |
Burke, W. J., Martinis, C. R., Lai, P. C., Gentile, L. C., Sullivan, C., and Pfaff, R. F. (2016). C/NOFS observations of electromagnetic coupling between magnetically conjugate MSTID structures. J. Geophys. Res., 121(3), 2569–2582. https://doi.org/10.1002/2015JA021965 |
Burnside, R. G., Walker, J. C. G., Behnke, R. A., and Gonzales, C. A. (1983). Polarization electric fields in the nighttime F layer at Arecibo. J. Geophys. Res., 88(A8), 6259–6266. https://doi.org/10.1029/JA088iA08p06259 |
Candido, C. M. N., Batista, I. S., Becker-Guedes, F., Abdu, M. A., Sobral, J. H. A., and Takahashi, H. (2011). Spread F occurrence over a southern anomaly crest location in Brazil during June solstice of solar minimum activity. J. Geophys. Res., 116(A6), A06316. https://doi.org/10.1029/2010JA016374 |
Chen, G. Y., Zhou, C., Liu, Y., Zhao, J. Q., Tang, Q., Wang, X., and Zhao, Z. Y. (2019). A statistical analysis of medium-scale traveling ionospheric disturbances during 2014-2017 using the Hong Kong CORS network. Earth Planets Space, 71(1), 52. https://doi.org/10.1186/s40623-019-1031-9 |
Chu, Y. H., Wang, K. H., Wu, K. H., Chen, K. T., Tzeng, K. J., Su, C. L., and Plane, J. M. C. (2014). Morphology of sporadic E layer retrieved from COSMIC GPS radio occultation measurements: Wind shear theory examination. J. Geophys. Res., 119(3), 2117–2136. https://doi.org/10.1002/2013JA019437 |
Cohen, R., and Bowles, K. L. (1967). Secondary irregularities in the equatorial electrojet. J. Geophys. Res., 72(3), 885–894. https://doi.org/10.1029/JZ072i003p00885 |
Cosgrove, R. B., and Tsunoda, R. T. (2001). Polarization electric fields sustained by closed-current dynamo structures in midlatitude sporadic E. Geophys. Res. Lett., 28(8), 1455–1458. https://doi.org/10.1029/2000GL012178 |
Cosgrove, R. B., and Tsunoda, R. T. (2002a). Wind-shear-driven, closed-current dynamos in midlatitude sporadic E. Geophys. Res. Lett., 29(2), 1020. https://doi.org/10.1029/2001GL013697 |
Cosgrove, R. B., and Tsunoda, R. T. (2002b). A direction-dependent instability of sporadic-E layers in the nighttime midlatitude ionosphere. Geophys. Res. Lett., 29(18), 1864. https://doi.org/10.1029/2002GL014669 |
Cosgrove, R. B., and Tsunoda, R. T. (2003). Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere. J. Geophys. Res., 108(A7), 1283. https://doi.org/10.1029/2002JA009728 |
Cosgrove, R. B., and Tsunoda R. T. (2004). Instability of the E-F coupled nighttime midlatitude ionosphere. J. Geophys. Res., 109(A4), A04305. https://doi.org/10.1029/2003JA010243 |
Cosgrove, R. B. (2007). Generation of mesoscale F layer structure and electric fields by the combined Perkins and ES layer instabilities, in simulations. Ann. Geophys., 25(7), 1579–1601. https://doi.org/10.5194/angeo-25-1579-2007 |
Dabas, R. S., Das, R. M., Sharma, K., Garg, S. C., Devasia, C. V., Subbarao, K. S. V., and Rama Rao, P. V. S. (2007). Equatorial and low latitude spread-F irregularity characteristics over the Indian region and their prediction possibilities. J. Atmos. Sol. Terr. Phys., 69(6), 685–696. https://doi.org/10.1016/j.jastp.2007.01.002 |
Ding, F., Wan, W. X., Xu, G. R., Yu, T., Yang, G. L., and Wang, J. S. (2011). Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China. J. Geophys. Res., 116(A9), A09327. https://doi.org/10.1029/2011JA016545 |
Duly, T. M., Huba, J. D., and Makela, J. J. (2014). Self-consistent generation of MSTIDs within the SAMI3 numerical model. J. Geophys. Res., 119(8), 6745–6757. https://doi.org/10.1002/2014JA020146 |
Dungey J. W. (1956). Convective diffusion in the equatorial F region. J. Atmos. Terr. Phys., 9(5-6), 304–310. https://doi.org/10.1016/0021-9169(56)90148-9 |
Farley, D. T. Jr. (1959). A theory of electrostatic fields in a horizontally stratified ionosphere subject to a vertical magnetic field. J. Geophys. Res., 64(9), 1225–1233. https://doi.org/10.1029/JZ064i009p01225 |
Farley, D. T. Jr. (1960). A theory of electrostatic fields in the ionosphere at nonpolar geomagnetic latitudes. J. Geophys. Res., 65(3), 869–877. https://doi.org/10.1029/JZ065i003p00869 |
Farley, D. T. Jr. (1963). A plasma instability resulting in field-aligned irregularities in the ionosphere. J. Geophys. Res., 68(22), 6083–6097. https://doi.org/10.1029/JZ068i022p06083 |
Fejer, B. G., and Kelley, M. C. (1980). Ionospheric irregularities. Rev. Geophys., 18(2), 401–454. https://doi.org/10.1029/RG018i002p00401 |
Fukao, S., McClure, J. P., Ito, A., Sato, T., Kimura, I., Tsuda, T., and Kato, S. (1988). First VHF radar observation of midlatitude F-region field-aligned irregularities. Geophys. Res. Lett., 15(8), 768–771. https://doi.org/10.1029/GL015i008p00768 |
Fukao, S., Kelley, M. C., Shirakawa, T., Takami, T., Yamamoto, Y., Tsuda, T., and Kato, S. (1991). Turbulent upwelling of the mid-latitude ionosphere: 1. Observational results by the MU radar. J. Geophys. Res., 96(A3), 3725–3746. https://doi.org/10.1029/90JA02253 |
Garcia, F. J., Kelley, M. C., Makela, J. J., and Huang, C. S. (2000). Airglow observations of mesoscale low-velocity traveling ionospheric disturbances at midlatitudes. J. Geophys. Res., 105(A8), 18407–18415. https://doi.org/10.1029/1999JA000305 |
Haldoupis, C., and Schlegel, K. (1996). Characteristics of midlatitude coherent backscatter from the ionospheric E region obtained with Sporadic E Scatter experiment. J. Geophys. Res., 101(A6), 13387–13397. https://doi.org/10.1029/96JA00758 |
Haldoupis, C., Schlegel, K., and Farley, D. T. (1996). An explanation for type 1 radar echoes from the midlatitude E-region ionosphere. Geophys. Res. Lett., 23(1), 97–100. https://doi.org/10.1029/95GL03585 |
Haldoupis, C., Kelley, M. C., Hussey, G. C., and Shalimov, S. (2003). Role of unstable sporadic-E layers in the generation of midlatitude spread F. J. Geophys. Res., 108(A12), 1446. https://doi.org/10.1029/2003JA009956 |
Haldoupis, C., Pancheva, D., and Mitchell, N. J. (2004). A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers. J. Geophys. Res., 109(A2), A02302. https://doi.org/10.1029/2003JA010253 |
Haldoupis, C., Meek, C., Christakis, N., Pancheva, D., and Bourdillon, A. (2006). Ionogram height-time-intensity observations of descending sporadic E layers at mid-latitude. J. Atmos. Sol. Terr. Phys., 68(3-5), 539–557. https://doi.org/10.1016/j.jastp.2005.03.020 |
Haldoupis, C., Pancheva, D., Singer, W., Meek, C., and MacDougall, J. (2007). An explanation for the seasonal dependence of midlatitude sporadic E layers. J. Geophys. Res., 112(A6), A06315. https://doi.org/10.1029/2007JA012322 |
Haldoupis, C. (2012). Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Sci. Rev., 168(1-4), 441–461. https://doi.org/10.1007/s11214-011-9786-8 |
Hamza, A. M. (1999). Perkins instability revisited. J. Geophys. Res., 104(A10), 22567–22575. https://doi.org/10.1029/1999JA900307 |
Hines, C. O. (1960). Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys., 38(11), 1441–1481. https://doi.org/10.1139/p60-150 |
Hooke, W. H. (1968). Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmos. Terr. Phys., 38(5), 795–823. https://doi.org/10.1016/S0021-9169(68)80033-9 |
Huang, F. Q., Dou, X. K., Lei, J. H., Lin, J., Ding, F., and Zhong, J. H. (2016). Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China. J. Geophys. Res., 121(9), 8887–8899. https://doi.org/10.1002/2016JA022760 |
Hysell, D., Larsen, M., Fritts, D., Laughman, B., and Sulzer, M. (2018). Major upwelling and overturning in the mid-latitude F region ionosphere. Nat. Commun., 9(1), 3326. https://doi.org/10.1038/s41467-018-05809-x |
Jiang, C. H., Yang, G. B., Liu, J., and Zhao, Z. Y. (2019). A study of the F2 layer stratification on ionograms using a simple model of TIDs. J. Geophys. Res., 124(2), 1317–1327. https://doi.org/10.1029/2018JA026040 |
Kagan, L. M., and Kelley, M. C. (1998). A wind-driven gradient drift mechanism for mid-latitude E-region ionospheric irregularities. Geophys. Res. Lett., 25(22), 4141–4144. https://doi.org/10.1029/1998GL900123 |
Kelley, M. C., Larsen, M. F., LaHoz, C., and McClure, J. P. (1981). Gravity wave initiation of equatorial spread F: A case study. J. Geophys. Res., 86(A11), 9087–9100. https://doi.org/10.1029/JA086iA11p09087 |
Kelley, M. C., and Fukao, S. (1991). Turbulent upwelling of the mid-latitude ionosphere: 2. Theoretical framework. J. Geophys. Res., 96(A3), 3747–3753. https://doi.org/10.1029/90JA02252 |
Kelley, M. C., Haldoupis, C., Nicolls, M. J., Makela, J. J., Belehaki, A., Shalimov, S., and Wong, V. K. (2003). Case studies of coupling between the E and F regions during unstable sporadic-E conditions. J. Geophys. Res., 108(A12), 1447. https://doi.org/10.1029/2003JA009955 |
Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics. San Diego, CA, USA: Academic.222 |
Kotake, N., Otsuka, Y., Tsugawa, T., Ogawa, T., and Saito, A. (2006). Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances. J. Geophys. Res., 111(A4), A04306. https://doi.org/10.1029/2005JA011418 |
Kotake, N., Otsuka, Y., Ogawa, T., Tsugawa, T., and Saito, A. (2007). Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planets Space, 59(2), 95–102. https://doi.org/10.1186/BF03352681 |
Larsen, M. F., Fukao, S., Yamamoto, M., Tsunoda, R., Igarashi, K., and Ono, T. (1998). The SEEK chemical release experiment: Observed neutral wind profile in a region of sporadic E. Geophys. Res. Lett., 25(11), 1789–1792. https://doi.org/10.1029/98GL00986 |
Larsen, M. F. (2000). A shear instability seeding mechanism for quasiperiodic radar echoes. J. Geophys. Res., 105(A11), 24931–24940. https://doi.org/10.1029/1999JA000290 |
Larsen, M. F., Yamamoto, M., Fukao, S., Tsunoda, R. T., and Saito, A. (2005). Observations of neutral winds, wind shears, and wave structure during a sporadic-E/QP event. Ann. Geophys., 23(7), 2369–2375. https://doi.org/10.5194/angeo-23-2369-2005 |
Li, G., Ning, B., Hu, L., Liu, L., Yue, X., Wan, W., Zhao, B., Igarashi, K., Kubota, M., … Liu, J. (2010). Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004. J. Geophys. Res., 115(A4), A04304. https://doi.org/10.1029/2009ja014830 |
Li, G. Z., Ning, B. Q., Hu, L. H., and Li, M. (2013). Observations on the field-aligned irregularities using Sanya VHF radar: 2. Low latitude Ionospheric E-region quasi-periodic echoes in the East Asian sector. Chin. J. Geophys. (in Chinese) |
Li, G. Z., Ning, B. Q., and Hu, L. H. (2014). Interferometry observations of low-latitude E-region irregularity patches using the Sanya VHF radar. Sci. China Technol. Sci., 57(8), 1552–1561. https://doi.org/10.1007/s11431-014-5592-3 |
Lindzen, R. S., and Hong, S. S. (1974). Effects of mean winds and horizontal temperature gradients on solar and lunar semidiurnal tides in the atmosphere. J. Atmos. Sci., 31(5), 1421–1466. https://doi.org/10.1175/1520-0469(1974)031<1421:EOMWAH>2.0.CO;2 |
Liu, Y., Zhou, C., Tang, Q., Li, Z. Q., Song, Y., Qing, H. Y., Ni, B. B., and Zhao, Z. Y. (2018). The seasonal distribution of sporadic E layers observed from radio occultation measurements and its relation with wind shear measured by TIMED/TIDI. Adv. Space Res., 62(2), 426–439. https://doi.org/10.1016/j.asr.2018.04.026 |
Liu, Y., Zhou, C., Tang, Q., Kong, J., Gu, X. D., Ni, B. B., Yao, Y. B., and Zhao, Z. Y. (2019). Evidence of mid- and low-latitude nighttime ionospheric E-F coupling: coordinated observations of sporadic E layers, F-region field-aligned irregularities, and medium-scale traveling ionospheric disturbances. IEEE Trans. Geosci. Remote Sens., 57(10), 7547–7557. https://doi.org/10.1109/TGRS.2019.2914059 |
Liu, Y., Zhou, C., Xu, T., Wang, Z. K., Tang, Q., Deng, Z. X., and Chen, G. Y. (2020). Investigation of midlatitude nighttime ionospheric E-F coupling and interhemispheric coupling by using COSMIC GPS radio occultation measurements. J. Geophys. Res., 125(3), e2019JA027625. https://doi.org/10.1029/2019JA027625 |
MacDougall, J. W. (1974). 110 km neutral zonal wind patterns. Planet. Space Sci., 22(4), 545–558. https://doi.org/10.1016/0032-0633(74)90089-0 |
Makela, J. J., and Otsuka, Y. (2011). Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev., 168(1-4), 419–440. https://doi.org/10.1007/s11214-011-9816-6 |
Maksyutin, S. V., and Sherstyukov, O. N. (2005). Dependence of E-sporadic layer response on solar and geomagnetic activity variations from its ion composition. Adv. Space Res., 35(8), 1496–1499. https://doi.org/10.1016/j.asr.2005.05.062 |
Martinis, C., Baumgardner, J., Wroten, J., and Mendillo, M. (2010). Seasonal dependence of MSTIDs obtained from 630.0 nm airglow imaging at Arecibo. Geophys. Res. Lett., 37(11), L11103. https://doi.org/10.1029/2010GL043569 |
Martinis, C., Baumgardner, J., Mendillo, M., Wroten, J., MacDonald, T., Kosch, M., Lazzarin, M., and Umbriaco, G. (2019). First conjugate observations of Medium-Scale Traveling Ionospheric Disturbances (MSTIDs) in the Europe-Africa longitude sector. J. Geophys. Res., 124(3), 2213–2222. https://doi.org/10.1029/2018JA026018 |
Maruyama, T., Fukao, S., and Yamamoto, M. (2000). A possible mechanism for echo striation generation of radar backscatter from midlatitude sporadic E. Radio Sci., 35(5), 1155–1164. https://doi.org/10.1029/1999RS002296 |
Maruyama, T., Saito, S., Yamamoto, M., and Fukao, S. (2006). Simultaneous observation of sporadic E with a rapid-run ionosonde and VHF coherent backscatter radar. Ann. Geophys., 24(1), 153–162. https://doi.org/10.5194/angeo-24-153-2006 |
Mathews, J. D. (1998). Sporadic E: Current views and recent progress. J. Atmos. Sol. Terr. Phys., 60(4), 413–435. https://doi.org/10.1016/S1364-6826(97)00043-6 |
Mathews, J. D., González, S., Sulzer, M. P., Zhou, Q. H., Urbina, J., Kudeki, E., and Franke, S. (2001). Kilometer-scale layered structures inside spread-F. Geophys. Res. Lett., 28(22), 4167–4170. https://doi.org/10.1029/2001GL013077 |
Ogawa, T., Takahashi, O., Otsuka, Y., Nozaki, K., Yamamoto, M., and Kita, K. (2002). Simultaneous middle and upper atmosphere radar and ionospheric sounder observations of midlatitude E region irregularities and sporadic E layer. J. Geophys. Res., 107(A10), 1275. https://doi.org/10.1029/2001JA900176 |
Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P. (2004). Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophys. Res. Lett., 31(15), L15803. https://doi.org/10.1029/2004GL020262 |
Otsuka, Y., Onoma, F., Shiokawa, K., Ogawa, T., Yamamoto, M., and Fukao, S. (2007). Simultaneous observations of nighttime medium-scale traveling ionospheric disturbances and E region field-aligned irregularities at midlatitude. J. Geophys. Res., 112(A06317). https://doi.org/10.1029/2005JA011548 |
Otsuka, Y., Shiokawa, K., Ogawa, T., Yokoyama, T., and Yamamoto, M. (2009). Spatial relationship of nighttime medium-scale traveling ionospheric disturbances and F region field-aligned irregularities observed with two spaced all-sky airglow imagers and the middle and upper atmosphere radar. J. Geophys. Res., 114(A5), A05302. https://doi.org/10.1029/2008JA013902 |
Otsuka, Y., Suzuki, K., Nakagawa, S., Nishioka, M., Shiokawa, K., and Tsugawa, T. (2013). GPS observations of medium-scale traveling ionospheric disturbances over Europe. Ann. Geophys., 31(2), 163–172. https://doi.org/10.5194/angeo-31-163-2013 |
Pancheva, D., Haldoupis, C., Meek, C. E., Manson, A. H., and Mitchell, N. J. (2003). Evidence of a role for modulated atmospheric tides in the dependence of sporadic E layers on planetary waves. J. Geophys. Res., 108(A5), 1176. https://doi.org/10.1029/2002JA009788 |
Patra, A. K., Venkateswara Rao, N., and Choudhary, R. K. (2009). Daytime low-altitude quasi-periodic echoes at Gadanki: Understanding of their generation mechanism in the light of their Doppler characteristics. Geophys. Res. Lett., 36(5), L05107. https://doi.org/10.1029/2008GL036670 |
Paul, K. S., Haralambous, H., Oikonomou, C., and Paul, A. (2019). Long-term aspects of nighttime spread F over a low mid-latitude European station. Adv. Space Res., 64(6), 1199–1216. https://doi.org/10.1016/j.asr.2019.06.020 |
Pedatella, N. M., Liu, H. L., Richmond, A. D., Maute, A., and Fang, T. W. (2012). Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratosphere warmings and their influence on the low-latitude ionosphere. J. Geophys. Res., 117(A8), A08326. https://doi.org/10.1029/2012JA017858 |
Pietrella, M., and Bianchi, C. (2009). Occurrence of sporadic-E layer over the ionospheric station of Rome: Analysis of data for thirty-two years. Adv. Space Res., 44(1), 72–81. https://doi.org/10.1016/j.asr.2009.03.006 |
Perkins F. (1973). Spread F and ionospheric currents. J. Geophys. Res., 78(1), 218–226. https://doi.org/10.1029/JA078i001p00218 |
Ratcliffe, J. A. (1972). An Introduction to the Ionosphere and Magnetosphere. Cambridge: Cambridge University Press.222 |
Saito, A., Nishimura, M., Yamamoto, M., Fukao, S., Tsugawa, T., Otsuka, Y., Miyazaki, S., and Kelley, M. C. (2002). Observations of traveling ionospheric disturbances and 3-m scale irregularities in the nighttime F-region ionosphere with the MU radar and a GPS network. Earth Planets Space, 54, 31–44. https://doi.org/10.1186/BF03352419 |
Schlegel, K., and Haldoupis, C. (1994). Observation of the modified two-stream plasma instability in the midlatitude E region ionosphere. J. Geophys. Res., 99(A4), 6219–6226. https://doi.org/10.1029/93JA02869 |
Shi, J. K., Wang, G. J., Reinisch, B. W., Shang, S. P., Wang, X., Zherebotsov, G., and Potekhin, A. (2011). Relationship between strong range spread F and ionospheric scintillations observed in Hainan from 2003 to 2007. J. Geophys. Res., 116(A8), A08306. https://doi.org/10.1029/2011JA016806 |
Shiokawa, K., Ihara, C., Otsuka, Y., and Ogawa, T. (2003). Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res., 108(A1), 1052. https://doi.org/10.1029/2002JA009491 |
Simon, A. (1963). Instability of a partially ionized plasma in crossed electric and magnetic fields. Phys. Fluids, 6(3), 382–388. https://doi.org/10.1063/1.1706743 |
Smith E. K. (1957). Worldwide occurrence of sporadic E. NBS Circular 582, Washington. D.C: U.S. Gort. Printing Office.222 |
Sripathi, S., Patra, A. K., Sivakumar, V., and Rao, P. B. (2003). Shear instability as a source of the daytime quasi-periodic radar echoes observed by the Gadanki VHF radar. Geophys. Res. Lett., 30(22), 2149. https://doi.org/10.1029/2003GL017544 |
Stening, R. J., Forbes, J. M., Hagan, M. E., and Richmond, A. D. (1997). Experiments with a lunar atmospheric tidal model. J. Geophys. Res., 102(D12), 13465–13471. https://doi.org/10.1029/97JD00778 |
Sun, L., Xu, J., Wang, W., Yue, X., Yuan, W., Ning, B., Zhang, D., and de Meneses, F. C. (2015). Mesoscale field-aligned irregularity structures (FAIs) of airglow associated with medium-scale traveling ionospheric disturbances (MSTIDs). J. Geophys. Res., 120(11), 9839–9858. https://doi.org/10.1002/2014JA020944 |
Swartz, W. E., Kelley, M. C., Makela, J. J., Collins, S. C., Kudeki, E., Franke, S., Urbina, J., Aponte, N., Sulzer, M. P., and González, S. A. (2000). Coherent and incoherent scatter radar observations during intense mid-latitude spread F. Geophys. Res. Lett., 27(18), 2829–2832. https://doi.org/10.1029/2000GL000021 |
Tang, Q., Zhou, C., Liu, Y., and Chen, G. Y. (2020). Response of sporadic E layer to sudden stratospheric warming events observed at low and middle latitudes. J. Geophys. Res., 125(2), e2019JA027283. https://doi.org/10.1029/2019JA027283 |
Tsunoda, R. T., Fukao, S., and Yamamoto, M. (1994). On the origin of quasi-periodic radar backscatter from midlatitude sporadic E. Radio Sci., 29(1), 349–365. https://doi.org/10.1029/93RS01511 |
Tsunoda, R. T., and Cosgrove, R. B. (2001). Coupled electrodynamics in the nighttime midlatitude ionosphere. Geophys. Res. Lett., 28(22), 4171–4174. https://doi.org/10.1029/2001GL013245 |
Tsunoda, R. T., Cosgrove, R. B., and Ogawa, T. (2004). Azimuth-dependent E s layer instability: A missing link found. J. Geophys. Res., 109(A12), A12303. https://doi.org/10.1029/2004JA010597 |
Vadas, S. L. (2007). Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J. Geophys. Res., 112(A6), A06305. https://doi.org/10.1029/2006JA011845 |
Valladares, C. E., and Sheehan, R. (2016). Observations of conjugate MSTIDs using networks of GPS receivers in the American sector. Radio Sci., 51(9), 1470–1488. https://doi.org/10.1002/2016RS005967 |
Venkateswara Rao, N., Patra, A. K., and Rao, S. V. B. (2008). Some new aspects of low-latitude E-region QP echoes revealed by Gadanki radar: Are they due to Kelvin-Helmholtz instability or gravity waves?. J. Geophys. Res., 113(A3), A03309. https://doi.org/10.1029/2007JA012574 |
Wang, G. J., Shi, J. K., Wang, X., Shang, S. P., Zherebtsov, G., and Pirog, O. M. (2010). The statistical properties of spread F observed at Hainan station during the declining period of the 23rd solar cycle. Ann. Geophys., 28(6), 1263–1271. https://doi.org/10.5194/angeo-28-1263-2010 |
Wang, N., Guo, L. X., Zhao, Z. W., Ding, Z. H., and Lin, L. K. (2018). Spread-F occurrences and relationships with foF2 and h′F at low- and mid-latitudes in China. Earth Planets Space, 70(1), 59. https://doi.org/10.1186/s40623-018-0821-9 |
Whitehead, J. D. (1960). The formation of the Sporadic-E layer in the temperate zones. J. Atmos. Terr. Phys., 20(1), 49–58. https://doi.org/10.1016/0021-9169(61)90097-6 |
Wilkinson, P. J., Szuszczewicz, E. P., and Roble, R. G. (1992). Measurements and modelling of intermediate, descending, and sporadic layers in the lower ionosphere: results and implications for global-scale ionospheric-thermospheric studies. Geophys. Res. Lett., 19(2), 95–98. https://doi.org/10.1029/91GL02774 |
Woodman, R. F., Yamamoto, M., and Fukao, S. (1991). Gravity wave modulation of gradient drift instabilities in mid-latitude sporadic E irregularities. Geophys. Res. Lett., 18(7), 1197–1200. https://doi.org/10.1029/91GL01159 |
Xiao, S. G., Shi, J. K., Zhang, D. H., Hao, Y. Q., and Huang, W. Q. (2012). Observational study of daytime ionospheric irregularities associated with typhoon. Sci. China Tech. Sci., 55(5), 1302–1304. https://doi.org/10.1007/s11431-012-4816-7 |
Yamamoto, M., Fukao, S., Woodman, R. F., Ogawa, T., Tsuda, T., and Kato, S. (1991). Mid-latitude E region field-aligned irregularities observed with the MU radar. J. Geophys. Res., 96(A9), 15943–15949. https://doi.org/10.1029/91JA01321 |
Yamamoto, M., Fukao, S., Ogawa, T., Tsuda, T., and Kato, S. (1992). A morphological study on mid-latitude E-region field-aligned irregularities observed with the MU radar. J. Atmos. Terr. Phys., 54(6), 769–777. https://doi.org/10.1016/0021-9169(92)90115-2 |
Yamamoto, M., Komoda, N., Fukao, S., Tsunoda, R. T., Ogawa, T., and Tsuda, T. (1994). Spatial structure of the E region field-aligned irregularities revealed by the MU radar. Radio Sci., 29(1), 337–347. https://doi.org/10.1029/93RS01846 |
Yokoyama T., Yamamoto M., and Fukao S. (2003). Computer simulation of polarization electric fields as a source of mid-latitude field-aligned irregularities. J. Geophys. Res., 108(A2), 1054. https://doi.org/10.1029/2002JA009513 |
Yokoyama, T., Yamamoto, M., Fukao, S., and Cosgrove, R. B. (2004a). Three-dimensional simulation on generation of polarization electric field in the midlatitude E-region ionosphere. J. Geophys. Res., 109(A1), A01309. https://doi.org/10.1029/2003JA010238 |
Yokoyama, T., Horinouchi, T., Yamamoto, M., and Fukao, S. (2004b). Modulation of the midlatitude ionospheric E region by atmospheric gravity waves through polarization electric field. J. Geophys. Res., 109(A12), A12307. https://doi.org/10.1029/2004JA010508 |
Yokoyama, T., Otsuka, Y., Ogawa, T., Yamamoto, M., and Hysell, D. L. (2008). First three-dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere. Geophys. Res. Lett., 35(3), L03101. https://doi.org/10.1029/2007GL032496 |
Yokoyama, T., Hysell, D. L., Otsuka, Y., and Yamamoto, M. (2009). Three-dimensional simulation of the coupled Perkins and E s-layer instabilities in the nighttime midlatitude ionosphere. J. Geophys. Res., 114(A3), A03308. https://doi.org/10.1029/2008JA013789 |
Yokoyama, T. (2014). Hemisphere-coupled modeling of nighttime medium-scale traveling ionospheric disturbances. Adv. Space Res., 54(3), 481–488. https://doi.org/10.1016/j.asr.2013.07.048 |
Zhang, Y. B., Wu, J., Guo, L. X., Hu, Y. L., Zhao, H. S., and Xu, T. (2015). Influence of solar and geomagnetic activity on sporadic-E layer over low, mid and high latitude stations. Adv. Space Res., 55(5), 1366–1371. https://doi.org/10.1016/j.asr.2014.12.010 |
Zhou, C., Tang, Q., Song, X. X., Qing, H. Y., Liu, Y., Wang, X., Gu, X. D., Ni, B. B., and Zhao, Z. Y. (2017). A statistical analysis of sporadic E layer occurrence in the midlatitude China region. J. Geophys. Res., 122(3), 3617–3631. https://doi.org/10.1002/2016JA023135 |
Zhou, C., Liu, Y., Tang, Q., Gu, X. D., Ni, B. B., and Zhao, Z. Y. (2018a). Investigation on the occurrence of mid-latitude E-region irregularity by Wuhan VHF radar and its relationship with sporadic E layer. IEEE Trans. Geosci. Remote Sens., 56(12), 7207–7216. https://doi.org/10.1109/TGRS.2018.2849359 |
Zhou, C., Tang, Q., Huang, F. Q., Liu, Y., Gu, X. D., Lei, J. H., Ni, B. B., and Zhao, Z. Y. (2018b). The simultaneous observations of nighttime ionospheric E region irregularities and F region medium-scale traveling ionospheric disturbances in midlatitude China. J. Geophys. Res., 123(6), 5195–5209. https://doi.org/10.1029/2018JA025352 |
[1] |
Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050 |
[2] |
LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028 |
[3] |
Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044 |
[4] |
Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046 |
[5] |
YuanZheng Wen, Dan Tao, GuangXue Wang, JiaYi Zong, JinBin Cao, Roberto Battiston, ZhiMa ZeRen, XuHui Shen, 2022: Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data, Earth and Planetary Physics, 6, 313-328. doi: 10.26464/epp2022028 |
[6] |
Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045 |
[7] |
LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011 |
[8] |
P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049 |
[9] |
KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004 |
[10] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[11] |
Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025 |
[12] |
Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050 |
[13] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[14] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[15] |
ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011 |
[16] |
JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045 |
[17] |
ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005 |
[18] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[19] |
Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032 |
[20] |
ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)