Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Bai, X. Y., Huang, K. M., Zhang, S. D., Huang, C. M. and Gong, Y. (2021). Anomalous changes of temperature and ozone QBOs in 2015−2017 from radiosonde observation and MERRA-2 reanalysis. Earth Planet. Phys., 5(3), 280–289. http://doi.org/10.26464/epp2021028

2021, 5(3): 280-289. doi: 10.26464/epp2021028

ATMOSPHERIC PHYSICS

Anomalous changes of temperature and ozone QBOs in 2015−2017 from radiosonde observation and MERRA-2 reanalysis

1. 

School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan 430072, China

3. 

State Observatory for Atmospheric Remote Sensing, Wuhan 430072, China

Corresponding author: KaiMing Huang, hkm@whu.edu.cn

Received Date: 2020-12-14
Web Publishing Date: 2021-04-22

Anomalous changes of zonal wind quasi-biennial oscillation (QBO) in winter 2015−2016 have received close attention. Combining radiosonde and satellite observations and reanalysis data, we investigate anomalous changes in temperature and ozone QBOs from the lower to middle stratosphere. As wind shear direction is reversed due to unexpected changes of zonal wind QBO at about 24−30 km, the shortest cold phase at 21−27 km appears in temperature QBO. This is different from the completely interrupted westward phase in zonal wind QBO, while the longest cold phase above almost 27 km lasts for 2−3 years from 2015 to 2017, owing to the absence of corresponding warm phase. Meridional scale reduction of temperature QBO causes a small temperature anomaly, thus the thermal wind relationship looks seemingly different from that in the other regular QBO cycles. QBO in the ozone mixing ratio anomaly shows a double-peak with inverse phase, and its phase below (above) 30 km is in agreement with (opposite to) the phase of temperature QBO because of different control mechanisms of ozone. Following temperature QBO variation, QBO in the ozone mixing ratio anomaly exhibits a less positive phase at 20−30 km in 2016−2017, and a very long positive phase above 30 km from 2015 to 2017. QBO in total column ozone shows a small peak in winter 2016−2017 since ozone is mainly concentrated at 20 to 30 km. Anomalous changes of temperature and ozone QBOs due to unexpected QBO zonal wind variation can be well-explained according to thermal wind balance and thermodynamic balance.

Key words: QBO, temperature anomaly, ozone anomaly, thermal wind balance

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics. San Diego: Academic Press. https://doi.org/10.1002/qj.49711548612222

Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., … Takahashi, M. (2001). The quasi-biennial oscillation. Rev. Geophys., 39(2), 179–229. https://doi.org/10.1029/1999RG000073

Barton, C. A., and McCormack, J. P. (2017). Origin of the 2016 QBO disruption and its relationship to extreme El Niño events. Geophys. Res. Lett., 44(21), 11150–11157. https://doi.org/10.1002/2017GL075576

Coy, L., Newman, P. A., Pawson, S., and Lait, L. R. (2017). Dynamics of the disrupted 2015/16 quasi-biennial oscillation. J. Climate, 30(15), 5661–5674. https://doi.org/10.1175/JCLI-D-16-0663.1

Dunkerton, T. J., and Delisi, D. P. (1985). Climatology of the equatorial lower stratosphere. J. Atmos. Sci., 42(4), 376–396. https://doi.org/10.1175/1520-0469(1985)042<0376:cotels>2.0.co;2

Dunkerton, T. J. (1997). The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res. Atmos., 102(D22), 26053–26076. https://doi.org/10.1029/96jd02999

Dunkerton, T. J. (2016). The quasi-biennial oscillation of 2015-2016: hiccup or death spiral?. Geophys. Res. Lett., 43(19), 10547–10552. https://doi.org/10.1002/2016gl070921

Ebdon, R. A. (1960). Notes on the wind flow at 50 mb in tropical and sub-tropical regions in January 1957 and January 1958. Quart. J. Roy. Meteor. Soc., 86(370), 540–542. https://doi.org/10.1002/qj.49708637011

Eluszkiewicz, J., Crisp, D., Zurek, R., Elson, L., Fishbein, E., Froidevaux, L., Waters, J., Grainger, R. G., Lambert, A., … Peckham, G. (1996). Residual circulation in the stratosphere and lower mesosphere as diagnosed from Microwave limb sounder data. J. Atmos. Sci., 53(2), 217–240. https://doi.org/10.1175/1520-0469(1996)053<0217:rcitsa>2.0.co;2

Fadnavis, S., and Beig, G. (2009). Quasi-biennial oscillation in ozone and temperature over tropics. J. Atmos. Sol. Terr. Phys., 71(2), 257–263. https://doi.org/10.1016/j.jastp.2008.11.012

Fleming, E. L., Jackman, C. H., Rosenfield, J. E., and Considine, D. B. (2002). Two-dimensional model simulations of the QBO in ozone and tracers in the tropical stratosphere. J. Geophys. Res. Atmos., 107(D23), 4665. https://doi.org/10.1029/2001jd001146

Garcia, R. R., and Solomon, S. (1985). The effect of breaking gravity waves on the dynamics and chemical composition of the mesosphere and lower thermosphere. J. Geophys. Res. Atmos., 90(D2), 3850–3868. https://doi.org/10.1029/JD090iD02p03850

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., … Zhao, B. (2017). The modern-era retrospective analysis for research and applications, Version 2(MERRA-2). J. Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

Hasebe, F. (1994). Quasi-biennial oscillations of ozone and diabatic circulation in the equatorial stratosphere. J. Atmos. Sci., 51(5), 729–745. https://doi.org/10.1175/1520-0469(1994)051<0729:QBOOOA>2.0.CO;2

Holton, J. R., and Lindzen, R. S. (1972). An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29(6), 1076–1080. https://doi.org/10.1175/1520-0469(1972)029<1076:autftq>2.0.co;2

Huang, K. M., Zhang, S. D., Yi, F., and Chen, Z. Y. (2009). Simulation of the equatorial quasi-biennial oscillation based on the parameterization of continuously spectral gravity waves. Chin. Sci. Bull., 54(2), 288–295. https://doi.org/10.1007/s11434-008-0409-z

Jones, D. B. A., Schneider, H. R., and McElroy, M. B. (1998). Effects of the quasi-biennial oscillation on the zonally averaged transport of tracers. J. Geophys. Res. Atmos., 103(D10), 11235–11249. https://doi.org/10.1029/98JD00682

Kerminen, V. M., Niemi, J. V., Timonen, H., Aurela, M., Frey, A., Carbone, S., Saarikoski, S., Teinilä, K., Hakkarainen, J., .. Hillamo, R. (2011). Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011. Atmos. Chem. Phys. Discuss., 11(23), 24933–24968. https://doi.org/10.5194/acpd-11-24933-2011

Lee, S., Shelow, D. M., Thompson, A. M., and Miller, S. K. (2010). QBO and ENSO variability in temperature and ozone from SHADOZ, 1998-2005. J. Geophys. Res. Atmos., 115(D18), D18105. https://doi.org/10.1029/2009jd013320

Li, H. Y., Kedzierski, P. P., and Matthes, K. (2020). On the forcings of the unusual quasi-biennial oscillation structure in February 2016. Atmos. Chem. Phys., 20(11), 6541–6561. https://doi.org/10.5194/acp-20-6541-2020

Lin, P., Held, I., and Ming, Y. (2019). The early development of the 2015/16 quasi-biennial oscillation disruption. J. Atmos. Sci., 76(3), 821–836. https://doi.org/10.1175/JAS-D-18-0292.1

Ling, X. D., and London, J. (1986). The quasi-biennial oscillation of ozone in the tropical middle stratosphere: a one-dimensional model. J. Atmos. Sci., 43(24), 3122–3137. https://doi.org/10.1175/1520-0469(1986)043<3122:TQBOOO>2.0.CO;2

Liu, J. H., Rodriguez, J. M., Oman, L. D., Douglass, A. R., Olsen, M. A., and Hu, L. (2020). Stratospheric impact on the Northern Hemisphere winter and spring ozone interannual variability in the troposphere. Atmos. Chem. Phys., 20(11), 6417–6433. https://doi.org/10.5194/acp-20-6417-2020

McCormack, J. P., and Siskind, D. E. (2002). Simulations of the quasi-biennial oscillation and its effect on stratospheric H2O, CH4, and age of air with an interactive two-dimensional model. J. Geophys. Res. Atmos., 107(D22), ACL 7-1–ACL 7-17. https://doi.org/10.1029/2002jd002141

Naujokat, B. (1986). An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J. Atmos. Sci., 43(17), 1873–1877. https://doi.org/10.1175/1520-0469(1986)043<1873:auotoq>2.0.co;2

Newman, P. A., Coy, L., Pawson, S., and Lait, L. R. (2016). The anomalous change in the QBO in 2015-2016. Geophys. Res. Lett., 43(16), 8791–8797. https://doi.org/10.1002/2016GL070373

Osprey, S. M., Butchart, N., Knight, J. R., Scaife, A. A., Hamilton, K., Anstey, J. A., Schenzinger, V., and Zhang, C. X. (2016). An unexpected disruption of the atmospheric quasi-biennial oscillation. Science, 353(6306), 1424–1427. https://doi.org/10.1126/science.aah4156

Pascoe, C. L., Gray, L. J., Crooks, S. A., Juckes, M. N., and Baldwin, M. P. (2005). The quasi-biennial oscillation: analysis using ERA-40 data. J. Geophys. Res. Atmos., 110(D8), D08105. https://doi.org/10.1029/2004JD004941

Plumb, R. A., and Bell, R. C. (1982). A model of the quasi-biennial oscillation on an equatorial beta-plane. Quart. J. Roy. Meteor. Soc., 108(456), 335–352. https://doi.org/10.1002/qj.49710845604

Randel, W. J., and Cobb, J. B. (1994). Coherent variations of monthly mean total ozone and lower stratospheric temperature. J. Geophys. Res. Atmos., 99(D3), 5433–5447. https://doi.org/10.1029/93JD03454

Randel, W. J., and Wu, F. (1996). Isolation of the ozone QBO in SAGE Ⅱ data by singular-value decomposition. J. Atmos. Sci., 53(17), 2546–2559. https://doi.org/10.1175/1520-0469(1996)053<2546:IOTOQI>2.0.CO;2

Randel, W. J., Wu, F., Swinbank, R., Nash, J., and O’Neill, A. (1999). Global QBO circulation derived from UKMO stratospheric analyses. J. Atmos. Sci., 56(4), 457–474. https://doi.org/10.1175/1520-0469(1999)056<0457:GQCDFU>2.0.CO;2

Rao, J., and Ren, R. C. (2017). Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Niños and their effects on the extratropical stratosphere. Adv. Atmos. Sci., 34(9), 1121–1133. https://doi.org/10.1007/s00376-017-6260-x

Rao, J., Yu, Y. Y., Guo, D., Shi, C. H., Chen, D., and Hu, D. Z. (2019). Evaluating the brewer-dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses. Earth Planet. Phys., 3(2), 166–181. https://doi.org/10.26464/epp2019012

Rao, J., Garfinkel, C. I., and White, I. P. (2020a). Impact of the quasi-biennial oscillation on the northern winter stratospheric polar vortex in CMIP5/6 Models. J. Climate, 33(11), 4787–4813. https://doi.org/10.1175/JCLI-D-19-0663.1

Rao, J., Garfinkel, C. I., and White, I. P. (2020b). How does the quasi-biennial oscillation affect the boreal winter tropospheric circulation in CMIP5/6 Models?. J. Climate, 33(20), 8975–8996. https://doi.org/10.1175/JCLI-D-20-0024.1

Reed, R. J., Campbell, W. J., Rasmussen, L. A., and Rogers, D. G. (1961). Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J. Geophys. Res., 66(3), 813–818. https://doi.org/10.1029/JZ066i003p00813

Ribera, P., Peña-Ortiz, C., Garcia-Herrera, R., Gallego, D., Gimeno, L., and Hernández, E. (2004). Detection of the secondary meridional circulation associated with the quasi-biennial oscillation. J. Geophys. Res. Atmos., 109(D18), D18112. https://doi.org/10.1029/2003JD004363

Tegtmeier, S., Fioletov, V. E., and Shepherd, T. G. (2010). A global picture of the seasonal persistence of stratospheric ozone anomalies. J. Geophys. Res. Atmos., 115(D18), D18119. https://doi.org/10.1029/2009jd013011

Tesche, M., Glantz, P., Johansson, C., Norman, M., Hiebsch, A., Ansmann, A., Althausen, D., Engelmann, R., and Seifert, P. (2012). Volcanic ash over Scandinavia originating from the Grímsvötn eruptions in May 2011. J. Geophys. Res. Atmos., 117(D9), D09201. https://doi.org/10.1029/2011jd017090

Veefkind, J. P., de Haan, J. F., Brinksma, E. J., Kroon, M., and Levelt, P. F. (2006). Total ozone from the ozone monitoring instrument (OMI) using the DOAS technique. IEEE Trans. Geosci. Remote Sens., 44(5), 1239–1244. https://doi.org/10.1109/TGRS.2006.871204

Wallace, J. M., Panetta, R. L., and Estberg, J. (1993). Representation of the equatorial stratospheric quasi-biennial oscillation in EOF phase space. J. Atmos. Sci., 50(12), 1751–1762. https://doi.org/10.1175/1520-0469(1993)050<1751:ROTESQ>2.0.CO;2

Weaver, C. J., Douglass, A. R., and Rood, R. B. (1993). Thermodynamic balance of three-dimensional stratospheric winds derived from a data assimilation procedure. J. Atmos. Sci., 50(17), 2987–2993. https://doi.org/10.1175/1520-0469(1993)050<2987:TBOTDS>2.0.CO;2

Xue, X. H., Liu, H. L., and Dou, X. K. (2012). Parameterization of the inertial gravity waves and generation of the quasi-biennial oscillation. J. Geophys. Res. Atmos., 117(D6), D06103. https://doi.org/10.1029/2011JD016778

Zawodny, J. M., and McCormick, M. P. (1991). Stratospheric aerosol and gas experiment Ⅱ measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide. J. Geophys. Res. Atmos., 96(D5), 9371–9377. https://doi.org/10.1029/91jd00517

[1]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[2]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[3]

HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053

[4]

YuMei He, LianXing Wen, Yann Capdeville, 2021: Morphology and possible origins of the Perm anomaly in the lowermost mantle of Earth, Earth and Planetary Physics, 5, 105-116. doi: 10.26464/epp2021009

[5]

Ting Luo, Wei Leng, 2021: Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab, Earth and Planetary Physics, 5, 290-295. doi: 10.26464/epp2021027

[6]

Yang Li, Zheng Sheng, JinRui Jing, 2019: Feature analysis of stratospheric wind and temperature fields over the Antigua site by rocket data, Earth and Planetary Physics, 3, 414-424. doi: 10.26464/epp2019040

[7]

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012

[8]

YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics, 6, 135-148. doi: 10.26464/epp2022005

[9]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[10]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[11]

Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011

[12]

ShuYang Yu, Jian Rao, Dong Guo, 2022: Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling, Earth and Planetary Physics, 6, 177-190. doi: 10.26464/epp2022015

[13]

YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026

[14]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[15]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[16]

D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004

[17]

AiBing Zhang, LingGao Kong, WenYa Li, Lei Li, BinBin Tang, ZhaoJin Rong, Yong Wei, JiJie Ma, YiTeng Zhang, LiangHai Xie, YuXian Wang, JianSen He, Bin Liu, WenJing Wang, Bin Su, JiaWei Li, Xu Tan, Fang Wang, TaiFeng Jin, FuHao Qiao, Peter Wurz, Yan Zhu, YunFei Bai, YiRen Li, XinBo Zhu, YueQiang Sun, YongLiao Zou, Chi Wang, 2022: Tianwen-1 MINPA observations in the solar wind, Earth and Planetary Physics, 6, 1-9. doi: 10.26464/epp2022014

[18]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[19]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[20]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Anomalous changes of temperature and ozone QBOs in 2015−2017 from radiosonde observation and MERRA-2 reanalysis

XiaoYan Bai, KaiMing Huang, ShaoDong Zhang, ChunMing Huang, Yun Gong