Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics. doi: 10.26464/epp2019006

doi: 10.26464/epp2019006

Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data

1. 

Key Laboratory of Earthquake Prediction, China Earthquake Administration, Beijing 100036, China

2. 

Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China

Corresponding author: HongLin Jin, jhl_1968@126.comYuan Gao, qzgyseis@163.com

Received Date: 2018-10-07
Web Publishing Date: 2019-03-01

We analyzed 360 permanent and campaign GPS data from 1999 to 2017 in the southern Sichuan-Yunan block, and obtained crustal horizontal deformation in this region. Then, we derived the strain rate using a multi-scale spherical wavelet method. Results reveal a complex pattern of tectonic movement in the southern Sichuan-Yunnan block. Compared to the stable Eurasian plate, the maximum rate of the horizontal deformation in the southern Sichuan-Yunnan block is approximately 22 mm/a. The Xiaojiang fault shows a significantly lower deformation—a left-lateral strike-slip movement of 9.5 mm/a. The Honghe fault clearly shows a complex segmental deformation from the north to south. The northern Honghe fault shows 4.3 mm/a right strike-slip with 6.7 mm/a extension; the southern Honghe fault shows 1.9 mm/a right strike-slip with 1.9 mm/a extension; the junction zone in the Honghe and Lijiang–Xiaojinhe faults shows an obvious clockwise-rotation deformation. The strain calculation results reveal that the maximum shear-strain rate in this region reaches 70 nstrain/a, concentrated around the Xiaojiang fault and at the junction of the Honghe and Lijiang–Xiaojinhe faults. We note that most of the earthquakes with magnitudes of 4 and above that occurred in this region were within the high shear strain-rate zones and the strain rate gradient boundary zone, which indicates that the magnitude of strain accumulation is closely related to the seismic activities. Comparison of the fast shear-wave polarization direction of the upper-crust with the upper-mantle anisotropy and the direction of the surface principal compressive strain rate obtained from the inversion of the GPS data reveals that the direction of the surface principal compressive strain is basically consistent with the fast shear-wave polarization direction of the upper crust anisotropy, but different from the polarization direction of the upper mantle. Our results support the hypothesis that the principal elements of the deformation mechanism in the southern Sichuan-Yunnan block are decoupling between the upper and lower crust and ductile flow in the lower crust.

Key words: GPS data, crustal horizontal deformation, extension, strike slip, strain rate, fast shear-wave polarization

Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res., 121(8), 6109–6131. https://doi.org/10.1002/2016JB013098

Bao, B. C., Hu, W., Liu, Z., et al. (2009). Dynamical analysis of DOG wavelet mapping with dilation and translation. Acta Physica Sinica, 58(4), 2240–2247

Bogdanova, I., Vandergheynst, P., Antoine, J. P., Jacques, L., and Morvidone, M. (2005). Stereographic wavelet frames on the sphere. Appl. Comput. Harmonic Anal., 19(2), 223–252. https://doi.org/10.1016/j.acha.2005.05.001

Chang, L. J., Wang, C. Y., and Ding, Z. F. (2006). A study on SKS splitting beneath the Yunnan region. Chinese J. Geophys.(in Chinese) , 49(11), 197–204. https://doi.org/10.3321/j.issn:0001-5733.2006.01.026

Chang, L. J., Ding, Z. F., and Wang, C. Y. (2015). Upper mantle anisotropy beneath the southern segment of North-south tectonic belt, China. Chinese J. Geophys.(in Chinese) , 58(11), 4052–4067. https://doi.org/10.6038/cjg20151114

Chen, Y., Zhang, Z. J., Sun, C. Q., and Badal, J. (2013). Crustal anisotropy from Moho converted Ps wave splitting analysis and geodynamic implications beneath the eastern margin of Tibet and surrounding regions. Gondwana Res., 24(3–4), 946–957. https://doi.org/10.1016/j.gr.2012.04.003

Deng, Q. D., Zhang, P. Z., Ran, Y. K., Yang, X. P., and Min, W., and Chu, Q. Z. (2003). Basic characteristics of active tectonics of China. Sci. China Ser. D Earth Sci., 46(4), 356–372. https://doi.org/10.1360/03yd9032

Gan, W. J., Zhang, P. Z., Shen, Z. K., Niu, Z. J., Wang, M., Wan, Y. G., Zhou, D. M., and Cheng, J. (2007). Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res., 112(B8), B08416. https://doi.org/10.1029/2005JB004120

Gao, Y., Wu, J., Yi, G. X., and Shi, Y. T. (2010). Crustal-mantle coupling in north China: Preliminary analysis from seismic anisotropy. Chinese Sci. Bull., 55(31), 3599–3605. https://doi.org/10.1007/s11434-010-4135-y

Gao, Y., Wu, J., Fukao, Y., Shi, Y. T., and Zhu, A. L. (2011). Shear wave splitting in the crust in North China: stress, faults and tectonic implications. Geophys. J. Int., 187(2), 642–654. https://doi.org/10.1111/j.1365-246X.2011.05200.x

Huang, J. L., Zhao, D. P., and Zheng, S. H. (2002). Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res., 107(B10), ESE 13-1–ESE 13-14. https://doi.org/10.1029/2000JB000137

Huang, Z. C., Wang, P., Xu, M. J., Wang, L. S., Ding, Z. F., Wu, Y., Xu, M. J., Mi, N., Yu, D. Y., and Li, H. (2015a). Mantle structure and dynamics beneath SE Tibet revealed by new seismic images. Earth Planet. Sci. Lett., 411, 100–111. https://doi.org/10.1016/j.jpgl.2014.11.040

Huang, Z. C., Wang, L. S., Xu, M. J., Ding, Z. F., Wu, Y., Wang, P., Mi, N., Yu, D. Y., and Li, H. (2015b). Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation. Earth Planet. Sci. Lett., 432, 354–362. https://doi.org/10.1016/j.jpgl.2015.10.027

Jiang, Z. S., and Liu, J. N. (2010). The method in establishing strain field and velocity field of crustal movement using least squares collocation. Chinese J. Geophys.(in Chinese) , 53(5), 1109–1117. https://doi.org/10.3969/j.issn.0001-5733.2010.05.011

Lev, E., Long, M. D., and van der Hilst, R. D. (2006). Seismic anisotropy in Eastern Tibet from shear wave splitting reveals changes in lithospheric deformation. Earth Planet. Sci. Lett., 251(3–4), 293–304. https://doi.org/10.1016/j.jpgl.2006.09.018

Lu, L. Y., He, Z. Q., Ding, Z. F., and Wang, C. Y. (2014). Azimuth anisotropy and velocity heterogeneity of Yunnan area based on seismic ambient noise. Chinese J. Geophys.(in Chinese) , 57(3), 822–836. https://doi.org/10.6038/cjg20140312

Pan, Y. J., and Shen, W. B. (2017). Contemporary crustal movement of southeastern Tibet: Constraints from dense GPS measurements. Sci. Rep., 7, 45348. https://doi.org/10.1038/srep45348

Savage, J. C., Svarc, J. L., and Prescott, W. H. (1999). Geodetic estimates of fault slip rates in the San Francisco Bay area. J. Geophys. Res., 104(B3), 4995–5002. https://doi.org/10.1029/1998JB900108

Shen, Z. K., Lu, J. N., Wang, M., and Bürgmann, R. (2005). Contemporary crustal deformation around the southeast borderland of the Tibetan plateau. J. Geophys. Res., 110(B11), B11409. https://doi.org/10.1029/2004JB003421

Shi, Y. T., Gao, Y., Wu, J., and Su, Y. J. (2009). Crustal seismic anisotropy in Yunnan, Southwestern China. J. Seismol., 13(2), 287–299. https://doi.org/10.1007/s10950-008-9128-9

Shi, Y. T., Gao, Y., Su, Y. J., and Wang, Q. (2012). Shear-wave splitting beneath Yunnan area of Southwest China. Earthq. Sci., 25(1), 25–34. https://doi.org/10.1007/s11589-012-0828-4

Sol, S., Meltzer, S. A., Bürgmann, R., van der Hilst, R. D., King, R., Chen, Z., Koons, P. O., Lev, E., Liu, Y. P., … Zurek, B. (2007). Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6), 563–566. https://doi.org/10.1130/G23408A.1

Su, X. N., Meng, G. J., and Wang, Z. (2016). Methodology and application of GPS strain field estimation based on multi-scale spherical wavelet. Chinese J. Geophys.(in Chinese) , 59(5), 1585–1595. https://doi.org/10.6038/cjg20160504

Tai, L. X., Gao, Y., Liu, G., and Xiao, Z. (2015). Crustal seismic anisotropy in the southeastern margin of Tibetan Plateau by ChinArray data: shear-wave splitting from temporary observations of the first phase. Chinese J. Geophys.(in Chinese) , 58(11), 4079–4091. https://doi.org/10.6038/cjg20151116

Wang, C. Y., Chan, W. W., Mooney, W. D. (2003). Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. J. Geophys. Res., 108, B9, 2442. https://doi.org/10.1029/2002JB001973

Wang, C. Y., Flesch, L. M., Silver, P. G., Chang, L. J., and Chan, W. W. (2008). Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5), 363–366. https://doi.org/10.1130/G24450A.1

Wang, Q., Zhang, P. Z., Freymueller, J. T., Bilham, R., Larson, K. M., Lai, X. A., You, X. Z., Niu, Z. J., Wu, J. C., … Chen, Q. Z. (2001). Present-day crustal deformation in china constrained by global positioning system measurements. Science, 294(5542), 574–578. https://doi.org/10.1126/science.1063647

Wang, S., Xu, X. Y., and Hu, J. F. (2015). Review on the study of crustal structure and geodynamic models for the southeast margin of the Tibetan Plateau. Chinese J. Geophys.(in Chinese) , 58(11), 4235–4253. https://doi.org/10.6038/cjg20151129

Xu, X. W., Wen, X. Z., Zheng, R. Z., Ma, W. T., Song, F. M., and Yu, G. H. (2003). Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci., 46(S2), 210–226. https://doi.org/10.1360/03dz0017

Yao, H. J., Beghein, C., and Van der Hilst, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅱ. Crustal and upper-mantle structure. Geophys. J. Int., 173(1), 205–219. https://doi.org/10.1111/j.1365-246X.2007.03696.x

Yao, H. J., Van der Hilst, B. C., and Montagner, J. P. (2010). Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography. J. Geophys. Res., 115(B12), B12307. https://doi.org/10.1029/2009JB007142

Zhang, E. H., Lou, H., Jia, S. X., and Li, Y. H. (2013). The deep crust structure characteristics beneath western Yunnan. Chinese J. Geophys.(in Chinese) , 56(6), 1915–1927. https://doi.org/10.6038/cjg20130614

Zhang, P. Z., Deng, Q. D., Zhang, G. M., Ma, J., Gan, W. J., Min, W., Mao, F. Y., and Wang, Q. (2003). Active tectonic blocks and strong earthquakes in the continent of China. Sci. China Ser. D Earth Sci., 46(S2), 13–24. https://doi.org/10.1360/03dz0002

Zhang, P. Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z. J., Sun, J. Z. … You, X. Z. (2004). Continuous deformation of the Tibetan from Global Positioning System data. Geology, 32(9), 809–812. https://doi.org/10.1130/G20554.1

[1]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[2]

KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics. doi: 10.26464/epp2019005

[3]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[4]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[5]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[6]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[7]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[8]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[9]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044

[10]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[11]

XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040

[12]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[13]

Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

[14]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[15]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu