Citation:
Xue, Z. X., Yuan, Z. G., Yu, X. D., Huang, S. Y. and Qiao, Z. (2021). Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves. Earth Planet. Phys., 5(1), 32–41doi: 10.26464/epp2021008
2021, 5(1): 32-41. doi: 10.26464/epp2021008
Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves
School of Electronic Information, Wuhan University, Wuhan 420072, China |
We report a simultaneous observation of two band electromagnetic ion cyclotron (EMIC) waves and toroidal Alfvén waves by the Van Allen Probe mission. Through wave frequency analyses, the mass density ρ is found to be locally peaked at the magnetic equator. Perpendicular fluxes of ions (< 100 eV) increase simultaneously with the appearances of EMIC waves, indicating a heating of these ions by EMIC waves. In addition, the measured ion distributions also support the equatorial peak formation, which accords with the result of the frequency analyses. The formation of local mass density peaks at the equator should be due to enhancements of equatorial ion concentrations, which are triggered by EMIC waves’ perpendicular heating on low energy ions.
Anderson, B. J., & Fuselier, S. A. (1994). Response of thermal ions to electromagnetic ion cyclotron waves. Journal of Geophysical Research, 99(A10), 19,413–19,425. https://doi.org/10.1029/94JA01235 |
André, M., and Cully, C. M. (2012). Low-energy ions: a previously hidden solar system particle population. Geophys. Res. Lett., 39(3), L03101. https://doi.org/10.1029/2011GL050242 |
Angerami, J. J., and Thomas, J. O. (1964). Studies of planetary atmospheres: 1. The distribution of electrons and ions in the Earth’s exosphere. J. Geophys. Res., 69(21), 4537–4560. https://doi.org/10.1029/JZ069i021p04537 |
Bortnik, J., Thorne, R. M., and Omidi, N. (2010). Nonlinear evolution of EMIC waves in a uniform magnetic field: 2. Test-particle scattering. J. Geophys. Res. Space Phys., 115(A12), A12242. https://doi.org/10.1029/2010JA015603 |
Denton, R. E., Takahashi, K., Anderson, R. R., and Wuest, M. P. (2004). Magnetospheric toroidal Alfvén wave harmonics and the field line distribution of mass density. J. Geophys. Res. Space Phys., 109(A6), A06202. https://doi.org/10.1029/2003JA010201 |
Denton, R. E. (2006). Magneto-seismology using spacecraft observations. In K. Takahashi, et al. (Eds.), Magnetospheric ULF Waves: Synthesis and New Directions. American Geophysical Union. https://doi.org/10.1029/169GM20222 |
Denton, R. E., Takahashi, K., Galkin, I. A., Nsumei, P. A., Huang, X., Reinisch, B. W., Anderson, R. R., Sleeper, M. K., and Hughes, W. J. (2006). Distribution of density along magnetospheric field lines. J. Geophys. Res. Space Phys., 111(A4), A04213. https://doi.org/10.1029/2005JA011414 |
Denton, R. E., Takahashi, K., Lee, J., Zeitler, C. K., Wimer, N. T., Litscher, L. E., Singer, H. J., and Min, K. (2015). Field line distribution of mass density at geostationary orbit. J. Geophys. Res. Space Phys., 120(6), 4409–4422. https://doi.org/10.1002/2014JA020810 |
Eviatar, A., Lenchek, A. M., and Singer, S. F. (1964). Distribution of density in an ion-exosphere of a nonrotating planet. Phys. Fluids, 7(11), 1775–1779. https://doi.org/10.1063/1.2746776 |
Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson K. C., Kihara K. H., Lake J. E., … Chen, J. (2013). Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the Radiation Belt Storm Probes mission. Space Sci. Rev., 179(1-4), 423–484. https://doi.org/10.1007/s11214-013-9968-7 |
Gary, S. P., Thomsen, M. F., Yin, L., and Winske, D. (1995). Electromagnetic proton cyclotron instability: interactions with magnetospheric protons. J. Geophys. Res. Space Phys., 100(A11), 21961–21972. https://doi.org/10.1029/95JA01403 |
Huang, Z., Yuan, Z. G., and Yu, X. D. (2020). Evolutions of equatorial ring current ions during a magnetic storm. Earth Planet. Phys., 4(2), 131–137. https://doi.org/10.26464/epp2020019 |
Kim, E. H., Johnson, J. R., Kim, H., and Lee, D. H. (2015). Inferring magnetospheric heavy ion density using EMIC waves. J. Geophys. Res. Space Phys., 120(8), 6464–6473. https://doi.org/10.1002/2015JA021092 |
Kitamura, N., Kitahara, M., Shoji, M., Miyoshi, Y., Hasegawa, H., Nakamura, S., Katoh, Y., Saito, Y., Yokota, S., … Burch, J. L. (2018). Direct measurements of two-way wave-particle energy transfer in a collisionless space plasma. Science, 361(6406), 1000–1003. https://doi.org/10.1126/science.aap8730 |
Kletzing, C. A., Kurth W. S., Acuna M., MacDowall R. J., Torbert R. B., Averkamp T., Bodet D., Bounds S. R., Chutter M., … Tyler J. (2013). The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP. Space Sci. Rev., 179(1-4), 127–181. https://doi.org/10.1007/s11214-013-9993-6 |
Meredith, N. P., Thorne, R. M., Horne, R. B., Summers, D., Fraser, B. J., and Anderson, R. R. (2003). Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. Space Phys., 108(A6), 1250. https://doi.org/10.1029/2002JA009700 |
Lemaire, J. F., and Gringauz, K. I. (1998). The Earth’s Plasmasphere. New York: Cambridge University Press.222 |
Min, K., Bortnik, J., Denton, R. E., Takahashi, K., Lee, J. and Singer, H. J. (2013). Quiet time equatorial mass density distribution derived from AMPTE/CCE and GOES using the magnetoseismology technique. J. Geophys. Res. Space Phys., 118(10), 6090–6105. https://doi.org/10.1002/jgra.50563 |
Min, K., Liu, K. J., Bonnell, J. W., Breneman, A. W., Denton, R. E., Funsten, H. O., Jahn, J. M., Kletzing, C. A., Kurth, W. S., Larsen, B. A., Reeves, G. D., Spence, H. E., and Wygant, J. R. (2015). Study of EMIC wave excitation using direct ion measurements. J. Geophys. Res. Space Phys., 120(4), 2702–2719. https://doi.org/10.1002/2014JA020717 |
Nosé, M., Oimatsu, S., Keika, K., Kletzing, C. A., Kurth, W. S., De Pascuale, S., Smith, C. W., MacDowall, R. J., Nakano, S., Reeves, G. D., Spence, H. E., and Larsen, B. A. (2015). Formation of the oxygen torus in the inner magnetosphere: Van Allen Probes observations. J. Geophys. Res. Space Phys., 120(2), 1182–1196. https://doi.org/10.1002/2014JA020593 |
Omidi, N., Thorne, R. M., and Bortnik, J. (2010). Nonlinear evolution of EMIC waves in a uniform magnetic field: 1. Hybrid simulations. J. Geophys. Res. Space Phys., 115(A12), A12241. https://doi.org/10.1029/2010JA015607 |
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1997). Numerical Recipes in Fortran 77: The Art of Scientific Computing (Vol. 1 of Fortran Numerical Recipes), 994 pp., New York: The Press Syndicate of the University of Cambridge.222 |
Rauch, J. L., and Roux, A. (1982). Ray tracing of ULF waves in a multicomponent magnetospheric plasma: consequences for the generation mechanism of ion cyclotron waves. J. Geophys. Res. Space Phys., 87(A10), 8191–8198. https://doi.org/10.1029/JA087iA10p08191 |
Roederer, J. G., and Zhang, H. (2014). Dynamics of Magnetically Trapped Particles: Foundations of the Physics of Radiation Belts and Space Plasmas. Berlin: Springer. https://doi.org/10.1007/978-3-642-41530-2222 |
Schulz, M. (1996). Eigenfrequencies of geomagnetic field lines and implications for plasma-density modeling. J. Geophys. Res. Space Phys., 101(A8), 17385–17397. https://doi.org/10.1029/95JA03727 |
Shi, Q. Q., Hartinger, M., Angelopoulos, V., Zong, Q. G., Zhou, X. Z., Zhou, X. Y., Kellerman, A., Tian, A. M., Weygand J., … Yao, Z. H. (2013). THEMIS observations of ULF wave excitation in the nightside plasma sheet during sudden impulse events. J. Geophys. Res. Space Phys., 118(1), 284–298. https://doi.org/10.1029/2012JA017984 |
Singer, H. J., Southwood, D. J., Walker, R. J., and Kivelson, M. G. (1981). Alfven wave resonances in a realistic magnetospheric magnetic field geometry. J. Geophys. Res. Space Phys., 86(A6), 4589–4596. https://doi.org/10.1029/JA086iA06p04589 |
Summers, D., and Thorne, R. M. (2003). Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res. Space Phys., 108(A4), 1143. https://doi.org/10.1029/2002JA009489 |
Takahashi, K., Denton, R. E., Anderson, R. R., and Hughes, W. J. (2006). Mass density inferred from toroidal wave frequencies and its comparison to electron density. J. Geophys. Res. Space Phys., 111(A1), A01201. https://doi.org/10.1029/2005JA011286 |
Takahashi, K., and Denton, R. E. (2007). Magnetospheric seismology using multiharmonic toroidal waves observed at geosynchronous orbit. J. Geophys. Res. Space Phys., 112(A5), A05204. https://doi.org/10.1029/2006JA011709 |
Takahashi, K., Glassmeier, K. H., Angelopoulos, V., Bonnell, J., Nishimura, Y., Singer, H. J., and Russell, C. T. (2011). Multisatellite observations of a giant pulsation event. J. Geophys. Res. Space Phys., 116(11), A11223. https://doi.org/10.1029/2011JA016955 |
Tsyganenko, N. A., and Sitnov, M. I. (2005). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. J. Geophys. Res. Space Phys., 110(A3), A03208. https://doi.org/10.1029/2004JA010798 |
Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., Ludlam, M., Turin, P., Harvey, P. R., … Tao, J. B. (2013). The electric field and waves instruments on the radiation belt storm probes mission. Space Sci. Rev., 179(1-4), 183–220. https://doi.org/10.1007/s11214-013-0013-7 |
Yu, X. D., and Yuan, Z. G. (2019). Saturation characteristics of parallel EMIC waves in the inner magnetosphere. Geophys. Res. Lett., 46(14), 7902–7910. https://doi.org/10.1029/2019GL083630 |
Yuan, Z. G., Yu, X. D., Ouyang, Z. H., Yao, F., Huang, S. Y., and Funsten, H. O. (2019). Simultaneous trapping of electromagnetic ion cyclotron and magnetosonic waves by background plasmas. J. Geophys. Res. Space Phys., 124(3), 1635–1643. https://doi.org/10.1029/2018JA026149 |
Zong, Q. G., Rankin, R., and Zhou, X. Z. (2017). The interaction of ultra-low-frequency Pc3-5 waves with charged particles in Earth's magnetosphere. Rev. Mod. Plasma Phys., 1, 10. https://doi.org/10.1007/s41614-017-0011-4 |
[1] |
WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023 |
[2] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[3] |
Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002 |
[4] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[5] |
LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004 |
[6] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
[7] |
XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039 |
[8] |
GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002 |
[9] |
Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021 |
[10] |
HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032 |
[11] |
Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048 |
[12] |
Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002 |
[13] |
Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020 |
[14] |
JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024 |
[15] |
Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025 |
[16] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[17] |
Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003 |
[18] |
Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007 |
[19] |
XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001 |
[20] |
Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)