Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

2018, 2(4): 327-341. doi: 10.26464/epp2018030

SOLID EARTH: SEISMOLOGY

Probabilistic seismic hazard assessment of Nepal using multiple seismic source models

1. 

Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

2. 

Department of Petroleum and Mining Engineering, Jessore University of Science and Technology, Jessore 7408, Bangladesh

3. 

Department of Geophysics, Stanford University, Stanford, California 94305-2215, USA

Corresponding author: Ling Bai, bailing@itpcas.ac.cn

Received Date: 2018-05-08
Web Publishing Date: 2018-07-01

The potential for devastating earthquakes in the Himalayan orogeny has long been recognized. The 2015 MW7.8 Gorkha, Nepal earthquake has heightened the likelihood that major earthquakes will occur along this orogenic belt in the future. Reliable seismic hazard assessment is a critical element in development of policy for seismic hazard mitigation and risk reduction. In this study, we conduct probabilistic seismic hazard assessment using three different seismogenic source models (smoothed gridded, linear, and areal sources) based on the complicated tectonics of the study area. Two sets of ground motion prediction equations are combined in a standard logic tree by taking into account the epistemic uncertainties in hazard estimation. Long-term slip rates and paleoseismic records are also incorporated in the linear source model. Peak ground acceleration and spectral acceleration at 0.2 s and 1.0 s for 2% and 10% probabilities of exceedance in 50 years are estimated. The resulting maps show significant spatial variation in seismic hazard levels. The region of the Lesser Himalaya is found to have high seismic hazard potential. Along the Main Himalayan Thrust from east to west beneath the Main Central Thrust, large earthquakes have occurred regularly in history; hazard values in this region are found to be higher than those shown on existing hazard maps. In essence, the combination of long span earthquake catalogs and multiple seismogenic source models gives improved seismic hazard constraints in Nepal.

Key words: Gorkha earthquake; probabilistic seismic hazard; peak ground acceleration; spectral acceleration; source models; logic tree

Abrahamson, N. A., Silva, W. J., and Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthq. Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913EQS198M

Abrahamson, N., Gregor, N., and Addo, K. (2016). BC hydro ground motion prediction equations for subduction earthquakes. Earthq. Spectra, 32(1), 23–44. https://doi.org/10.1193/051712EQS188MR

Ader, T., Avouac, J. P., Liu-Zeng, J., Lyon-Caen, H., Bollinger, L., Galetzka, J., Genrich, J., Thomas, M., Chanard, K., … Flouzat, M. (2012). Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. J. Geophys. Res.: Solid Earth, 117(B4), B04403. https://doi.org/10.1029/2011JB009071

Adhikari, L. B., Gautam, U. P., Koirala, B. P., Bhattarai, M., Kandel, T., Gupta, R. M., Timsina, C., Maharajan, N., Maharajan, K., … Bollinger, L. (2015). The aftershock sequence of the 2015 April 25 Gorkha-Nepal earthquake. Geophys. J. Int., 203(3), 2119–2124. https://doi.org/10.1093/gji/ggv412

Aki, K. (1965). Maximum likelihood estimate of b in the formula logN=a−bM and its confidence limits. Bull. Earthq. Res. Inst., 43(2), 237–239.

Ambraseys, N. N., Douglas, J., Sarma, S. K., and Smit, P. M. (2005). Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the middle east: horizontal peak ground acceleration and spectral acceleration. Bull. Earthq. Eng., 3(1), 1–53. https://doi.org/10.1007/s10518-005-0183-0

Ambraseys, N. N., and Douglas, J. (2004). Magnitude calibration of north Indian earthquakes. Geophys. J. Int., 159(1), 165–206. https://doi.org/10.1111/j.1365-246X.2004.02323.x

Atkinson, G. M., and Boore, D. M. (2003). Empirical ground-motion relations for subduction-zone earthquakes and their application to Cascadia and other regions. Bull. Seismol. Soc. Am., 93(4), 1703–1729. https://doi.org/10.1785/0120020156

Avouac, J.-P., Meng, L. S., Wei, S. J., Wang, T., and Ampuero, J.-P. (2015). Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat. Geosci., 8(9), 708–711. https://doi.org/10.1038/ngeo2518

Bai, L., Liu, H. B., Ritsema, J., Mori, J., Zhang, T. Z., Ishikawa, Y., and Li, G. H. (2016). Faulting structure above the Main Himalayan Thrust as shown by relocated aftershocks of the 2015 Mw7.8 Gorkha, Nepal, earthquake. Geophys. Res. Lett., 43(2), 637–642. https://doi.org/10.1002/2015GL066473

Bai, L., Li, G. H., Khan, N. G., Zhao, J. M., and Ding, L. (2017). Focal depths and mechanisms of shallow earthquakes in the Himalayan–Tibetan region. Gondwana Res., 41, 390–399. https://doi.org/10.1016/j.gr.2015.07.009

Baker, J. W. (2015). Introduction to Probabilistic Seismic Hazard Analysis. White Paper Version 2.1.222

Berryman, K., Ries, W., and Litchfield, N. (2014). The Himalayan Frontal Thrust: Attributes for seismic hazard Version 1.0. GEM Faulted Earth Project, available from http://www.nexus.globalquakemodel.org/. Accessed 10 Apr 2017222

Bettinelli, P., Avouac, J.-P., Flouzat, M., Jouanne, F., Bollinger, L., Willis, P., and Chitrakar, G. R. (2006). Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements. J. Geod., 80(8-11), 567–589. https://doi.org/10.1007/s00190-006-0030-3

Bhatia, S. C., Kumar, M. R., and Gupta, H. K. (1999). A probabilistic seismic hazard map of India and adjoining regions. Ann. di Geofis., 42(6), 1153–1164.

Bilham, R. (2015). Raising Kathmandu. Nat. Geosci., 8(8), 582–584. https://doi.org/10.1038/ngeo2498

Bilham, R. (2013). Societal and observational problems in earthquake risk assessments and their delivery to those most at risk. Tectonophys, 584, 166–173. https://doi.org/10.1016/j.tecto.2012.03.023

Bollinger, L., Tapponnier, P., Sapkota, S. N., and Klinger, Y. (2016). Slip deficit in central Nepal: omen for a repeat of the 1344 AD earthquake?. Earth Planet. Space, 68, 12. https://doi.org/10.1186/s40623-016-0389-1

Bommer, J. J., Scherbaum, F., Bungum, H., Cotton, F., Sabetta, F., and Abrahamson, N. A. (2005). On the use of logic trees for ground-motion prediction equations in seismic-hazard analysis. Bull. Seismol. Soc. Am., 95(2), 377–389. https://doi.org/10.1785/0120040073

Chaulagain, H., Rodrigues, H., Silva, V., Spacone, E., and Varum, H. (2015). Seismic risk assessment and hazard mapping in Nepal. Nat. Hazards, 78(1), 583–602. https://doi.org/10.1007/s11069-015-1734-6

Chiou, B. S. J., and Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq. Spectra, 30(3), 1117–1153. https://doi.org/10.1193/072813EQS219M

Cornell, C. A. (1968). Engineering seismic risk analysis. Bull. Seismol. Soc. Am., 58(5), 1583–1606.

Cornell, C. A, and Van Marke, E. H. (1969). The major influences on seismic risk. In Proceedings of the Third World Conference on Earthquake Engineering (pp. 69–73). Santiago, Chile.222

Cotton, F., Scherbaum, F., Bommer, J. J., and Bungum, H. (2006). Criteria for selecting and adjusting ground-motion models for specific target regions: Application to central Europe and rock sites. J. Seismol., 10(2), 137–156. https://doi.org/10.1007/s10950-005-9006-7.

Danciu, L., Pagani, M., Monelli, D., and Wiemer, S. (2010). GEM1 Hazard : Overview of PSHA Software. GEM Technical Report 2010-2, Pavia, Italy: GEM Foundation.222

Ding, L., Kapp, P., and Wan, X. Q. (2005). Paleocene-Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics, 24(3), TC3001. https://doi.org/10.1029/2004TC001729

Frankel, A. (1995). Mapping seismic hazard in the central and eastern United States. Seismol. Res. Lett., 66(4), 8–21. https://doi.org/10.1785/gssrl.66.4.8

Gardner, J., and Knopoff, L. (1974). Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?. Bull. Seismol. Soc. Am., 64(5), 1363–1367.

Grünthal, G., and Wahlström, R. (2003). An MW based earthquake Catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions. J. Seismol., 7(4), 507–531. https://doi.org/10.1023/B:JOSE.0000005715.87363.13

Hand, E., and Pulla, P. (2015). Nepal disaster presages a coming megaquake. Science, 348(6234), 484–485. https://doi.org/10.1126/science.348.6234.484

Hanks, T. C., and Kanamori, H. (1979). A moment magnitude scale. J. Geophys. Res.: Solid Earth, 84(B5), 2348–2350. https://doi.org/10.1029/JB084iB05p02348

IBC. (2006). International Building Code. Washington DC: International Code Council.222

Kaviris, G., Papadimitriou, P., Chamilothoris, L., and Makropoulos, K. (2008). Moment magnitudes for small and intermediate earthquakes. In Proceedings of the 31st General Assembly of the European Seismological Commission. ESC.222

Kijko, A., and Singh, M. (2011). Statistical tools for maximum possible earthquake magnitude estimation. Acta Geophys., 59(4), 674–700. https://doi.org/10.2478/s11600-011-0012-6

Kijko, A., and Smit, A. (2012). Extension of the aki-utsu b-value estimator for incomplete catalogs. Bull. Seismol. Soc. Am., 102(3), 1283–1287. https://doi.org/10.1785/0120110226

Kijko, A., Smit, A., and Sellevoll, M. A. (2016). Estimation of earthquake hazard parameters from incomplete data files. Part Ⅲ. Incorporation of uncertainty of earthquake-occurrence model. Bull. Seismol. Soc. Am., 106(3), 1210–1222. https://doi.org/10.1785/0120150252

Kolathayar, S., and Sitharam, T. G. (2012). Comprehensive probabilistic seismic hazard analysis of the Andaman-Nicobar regions. Bull. Seismol. Soc. Am., 102(5), 2063–2076. https://doi.org/10.1785/0120110219

Letort, J., Bollinger, L., Lyon-Caen, H., Guilhem, A., Cano, Y., Baillard, C., and Adhikari, L. B. (2016). Teleseismic depth estimation of the 2015 Gorkha-Nepal aftershocks. Geophys. J. Int., 207(3), 1584–1595. https://doi.org/10.1093/gji/ggw364

Nábělek, J., Hetényi, G., Vergne, J., Sapkota, S., Kafle, B., Jiang, M., Su, H. P., Chen, J., Huang, B.-S., and the Hi-CLIMB Team. (2009). Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment. Science, 325(5946), 1371–1374. https://doi.org/10.1126/science.1167719

Nath, S. K., and Thingbaijam, K. K. S. (2012). Probabilistic seismic hazard assessment of India. Seismol. Res. Lett., 83(1), 135–149. https://doi.org/10.1785/gssrl.83.1.135

Ordaz, M. G., Cardona, O.-D., Salgado-Gálvez, M. A., Bernal-Granados, G. A., Singh, S. K., and Zuloaga-Romero, D. (2014). Probabilistic seismic hazard assessment at global level. Int. J. Disaster Risk Reduct., 10, 419–427. https://doi.org/10.1016/j.ijdrr.2014.05.004

Ordaz, M., Faccioli, E., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., and D’Amico, V. (2015). CRISIS2015 version 2.2: Computer program for computing seismic hazard. Instituto de Ingenieria, UNAM, Mexico.222

Ornthammarath, T., Warnitchai, P., Worakanchana, K., Zaman, S., Sigbjörnsson, R., and Lai, C. G. (2011). Probabilistic seismic hazard assessment for Thailand. Bull. Earthq. Eng., 9(2), 367–394. https://doi.org/10.1007/s10518-010-9197-3

Pandey, M. R., Tandukar, R. P., Avouac, J. P., Vergne, J., and Héritier, T. (1999). Seismotectonics of the Nepal Himalaya from a local seismic network. J. Asian Earth Sci., 17(5-6), 703–712. https://doi.org/10.1016/S1367-9120(99)00034-6

Priestley, K., James, J., and Mckenzie, D. (2008). Lithospheric structure and deep earthquakes beneath India, the Himalaya and southern Tibet. Geophys. J. Int., 172(1), 345–362. https://doi.org/10.1111/j.1365-246X.2007.03636.x

Rahman, M. M., Bai, L., Khan, N. G., and Li, G. H. (2018). Probabilistic seismic hazard assessment for Himalayan-Tibetan region from historical and instrumental earthquake Catalogs. Pure Appl. Geophys., 175(2), 685–705. https://doi.org/10.1007/s00024-017-1659-y

Rajendran, C. P., John, B., and Rajendran, K. (2015). Medieval pulse of great earthquakes in the central Himalaya: Viewing past activities on the frontal thrust. J. Geophys. Res.: Solid Earth, 120(3), 1623–1641. https://doi.org/10.1002/2014JB011015

Ram, T. D., and Wang, G. X. (2013). Probabilistic seismic hazard analysis in Nepal. Earthq. Eng. Eng. Vibra., 12(4), 577–586. https://doi.org/10.1007/s11803-013-0191-z

Sabetta, F., Lucantoni, A., Bungum, H., and Bommer, J. J. (2005). Sensitivity of PSHA results to ground motion prediction relations and logic-tree weights. Soil Dyn. Earthq. Eng., 25(4), 317–329. https://doi.org/10.1016/j.soildyn.2005.02.002

Sapkota, S. N., Bollinger, L., Klinger, Y., Tapponnier, P., Gaudemer, Y., and Tiwari, D. (2013). Primary surface ruptures of the great Himalayan earthquakes in 1934 and 1255. Nat. Geosci., 6(1), 71–76. https://doi.org/10.1038/ngeo1669.

Sawires, R., Peláez, J. A., Fat-Helbary, R. E., and Ibrahim, H. A. (2016). Updated probabilistic seismic-hazard values for Egypt. Bull. Seismol. Soc. Am., 106(4), 1788–1801. https://doi.org/10.1785/0120150218

Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. J. Seismol., 10(2), 225–236. https://doi.org/10.1007/s10950-006-9012-4

Stepp, J. C. (1972). Analysis of completeness of the earthquake sample in the Puget Sound area and its effect on statistical estimates of earthquake hazard. In Proceedings of the 1st International Conference on Microzonazion (vol. 2, pp. 897–910), Seattle.222

Stevens, V., and Avouac, J.-P. (2015). Interseismic coupling on the Main Himalayan Thrust. Geophys. Res. Lett., 42(14), 5828–5837. https://doi.org/10.1002/2015GL064845

Stewart, J. P., Douglas, J., Javanbarg, M. B., Di Alessandro, C., Bozorgnia, Y., Abrahamson, N. A., Boore, D. M., Campbell, K. W., Delavaud, E., and Stafford, P. J. (2013). GEM-PEER Task 3 Project: Selection of a Global Set of Ground Motion Prediction Equations. PEER Report 2013/22.222

Stirling, M., and Goded, T. (2012). Magnitude scaling relationships. Report Produced for the GEM Faulted Earth & Regionalisation Global Componets, GNS Science Miscellaneous Series, 42, 35.222

Styron, R., Taylor, M., and Okoronkwo, K. (2010). Database of active structures from the Indo-Asian Collision. EOS, 91(20), 181–182. https://doi.org/10.1029/2010EO200001

Szeliga, W., Hough, S., Martin, S., and Bilham, R. (2010). Intensity, magnitude, location, and attenuation in India for felt earthquakes since 1762. Bull. Seismol. Soc. Am., 100(2), 570–584. https://doi.org/10.1785/0120080329

Tinti, S., and Mulargia, F. (1985). An improved method for the analysis of the completeness of a seismic catalogue. Lett. Nuovo Cimento, 42(1), 21–27. https://doi.org/10.1007/BF02739471

Utsu, T. (1965). A method for determining the value of b in a formula logN=abM showing the magnitude-frequency relation for earthquakes. Geophys. Bull. Hokkaido Univ., 13, 99–103.

Wang, Z. M., Butler, D. T., Woolery, E. W., and Wang, L. M. (2012). Seismic hazard assessment for the Tianshui urban area, Gansu Province, China. Int. J. Geophys., 2012, 461863. https://doi.org/10.1155/2012/461863

Wells, D. L., and Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am., 84(4), 974–1002.

Wiemer, S., and Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am., 90(4), 859–869. https://doi.org/10.1785/0119990114

Woo, G. (1996). Kernel estimation methods for seismic hazard area source modeling. Bull. Seismol. Soc. Am., 86(2), 353–362.

Wyss, M. (2005). Human losses expected in Himalayan earthquakes. Nat. Hazards, 34(3), 305–314. https://doi.org/10.1007/s11069-004-2073-1

Yen, Y. T., and Ma, K. F. (2011). Source-Scaling relationship for M 4.6-8.9 earthquakes, specifically for earthquakes in the Collision Zone of Taiwan. Bull. Seismol. Soc. Am., 101(2), 464–481. https://doi.org/10.1785/0120100046

Yin, A. (2006). Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci. Rev., 76(1-2), 1–131. https://doi.org/10.1016/j.earscirev.2005.05.004

Youngs, R. R., Chiou, S.-J., Silva, W. J., and Humphrey, J. R. (1997). Strong ground motion attenuation relationships for subduction zone earthquakes. Seismol. Res. Lett., 68(1), 58–73. https://doi.org/10.1785/gssrl.68.1.58

Zhang, P. Z., Yang, Z. X., Gupta, H. K., Bhatia, S. C., and Shedlock, K. M. (1999). Global seismic hazard assessment program (GSHAP) in continental Asia. Ann. Di Geof., 42(6), 1167–1190. https://doi.org/10.4401/ag-3778

Zhang, W. B., Iwata, T., and Irikura, K. (2006). Dynamic simulation of a dipping fault using a three-dimensional finite difference method with nonuniform grid spacing. J. Geophys. Res., 111, B05301. https://doi:10.1029/2005JB003725

Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa H., Irikura K., Thio H. K., Fukushima, Y. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bull. Seismol. Soc. Am., 96(3), 898–913. https://doi.org/10.1785/0120050122

[1]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[2]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[3]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[4]

YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015

[5]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[6]

XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009

[7]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

[8]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[9]

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

[10]

WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008

[11]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[12]

WeiMin Wang, JinLai Hao, ZhenXing Yao, 2018: Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras, Earth and Planetary Physics, 2, 86-87. doi: 10.26464/epp2018010

[13]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[14]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Probabilistic seismic hazard assessment of Nepal using multiple seismic source models

Md Moklesur Rahman, Ling Bai