Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

2018, 2(1): 67-73. doi: 10.26464/epp2018006


Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone


State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China


Key Laboratory of Active Tectonics and Volcanos, Institute of Geology,China Earthquake Administration, Beijing 100029, China


School of Earth Science and Geological Engineering, Sun Yat-Sen University, Guangzhou 510275, China

Corresponding author: ZhiKun Ren, rzk@ies.ac.cn; Lzkren@gmail.com

Received Date: 2017-10-11
Web Publishing Date: 2018-01-01

Characteristic slip and characteristic earthquake models have been proposed for several decades. Such models have been supported recently by high-resolution offset measurements. These models suggest that slip along a fault recurs via similarly sized, large earthquakes. The inter-event strain accumulation rate (ratio of earthquake slip and preceding interseismic time period) is used here to test the characteristic earthquake model by linking the slip and timing of past earthquakes on the Haiyuan Fault. We address how the inter-event strain accumulation rate varies over multiple seismic cycles by combining paleoearthquake studies with high-resolution airborne light detection and ranging (LiDAR) data to document the timing and size of paleoearthquake displacements along the western and middle segments of the Haiyuan Fault. Our observations encompass 5 earthquake cycles. We find significant variations over time and space along the Haiyuan Fault. We observe that on the middle segment of the Haiyuan Fault the rates slow down or increase as an anti-correlated function of the rates of preceding earthquakes. Here, we propose that the inter-event strain accumulation rates on the middle segment of the Haiyuan Fault are oscillating both spatially and temporally. However, along the western segment, the inter-event strain accumulation rate is both spatially and temporally steady, which is in agreement with quasi-periodic and slip-predictable models. Finally, we propose that different fault segments within a single fault zone may behave according to different earthquake models.

Key words: Haiyuan Fault, LiDAR, inter-event strain accumulation rates variation, earthquake model

Akçiz, S. O., Ludwig, L. G., Zielke, O., and Arrowsmith, J. R. (2014). Three-dimensional investigation of a 5 m deflected swale along the San Andreas fault in the Carrizo Plain. Bull. Seism. Soc. Am., 104(6), 2799–2808. https://doi.org/10.1785/0120120172 doi: 10.1785/0120120172.

Burchfiel, B. C., Zhang, P. Z., Wang, Y. P., Zhang, W. Q., Song, F. M., Deng, Q. D., Molnar, P., and Royden, L. (1991). Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the Northeastern Margin of the Tibetan Plateau. Tectonics, 10(6), 1091–1110. https://doi.org/10.1029/90TC02685 doi: 10.1029/90TC02685.

Cavalié, O., Lasserre, C., Doin, M.-P., Peltzer, G., Sun, J., Xu, X., and Shen, Z.-K. (2008). Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth Planet. Sci. Lett., 275(3–4), 246–257. https://doi.org/10.1016/j.jpgl.2008.07.057 doi: 10.1016/j.jpgl.2008.07.057.

Chéry, J., and Vernant, P. (2006). Lithospheric elasticity promotes episodic fault activity. Earth Planet. Sci. Lett., 243(1–2), 211–217. https://doi.org/10.1016/j.jpgl.2005.12.014 doi: 10.1016/j.jpgl.2005.12.014.

Deng, Q. D., Chen, S. F., Song, G. N., Zhu, S. L., Wang, Y. P., Zhang, W. Q., Jiao, D. C., Burchfiel, B. C., Molnar, P., … Zhang, P. Z. (1986). Variations in the geometry and amount of slip on the Haiyuan (Nanxihuashan) Fault zone, China and the surface rupture of the 1920 Haiyuan earthquake. In S. Das, et al. (Eds.), Earthquake Source Mechanics (pp. 169–182). Washington, DC: American Geophysical Union. https://doi.org/10.1029/GM037p0169

Feldl, N., and Bilham, R. (2006). Great Himalayan earthquakes and the Tibetan plateau. Nature, 444(7116), 165–170. https://doi.org/10.1038/nature05199 doi: 10.1038/nature05199.

Fialko, Y., Sandwell, D., Simons, M., and Rosen, P. (2005). Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435(7040), 295–299. https://doi.org/10.1038/nature03425 doi: 10.1038/nature03425.

Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature, 441(7096): 968–971. https://doi.org/10.1038/nature04797 doi: 10.1038/nature04797.

Jolivet, R., Lasserre, C., Doin, M.-P., Guillaso, S., Peltzer, G., Dailu, R., Sun, J., Shen, Z.-K., and Xu, X. (2012). Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. J. Geophys. Res.: Solid Earth, 117(B6). https://doi.org/10.1029/2011JB008732 doi: 10.1029/2011JB008732.

Klinger, Y., Etchebes, M., Tapponnier, P., and Narteau, C. (2011). Characteristic slip for five great earthquakes along the Fuyun fault in China. Nat. Geosci., 4(6), 389–392. https://doi.org/10.1038/ngeo1158 doi: 10.1038/ngeo1158.

Lasserre, C., Morel, P.-H., Gaudemer, Y., Tapponnier, P., Ryerson, F. J., King, G. C. P., Métivier, F., Kasser, M., Kashgarian, M., … Yuan, D. Y. (1999). Postglacial left slip rate and past occurrence of M≥8 earthquakes on the Western Haiyuan Fault, Gansu, China. J. Geophys. Res.: Solid Earth, 104(B8), 17633–17651. https://doi.org/10.1029/1998JB900082 doi: 10.1029/1998JB900082.

Li, C. Y., Zhang, P.-Z., Yin, J. H., and Min, W. (2009). Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics, 28(5). https://doi.org/10.1029/2008TC002302 doi: 10.1029/2008TC002302.

Li, Y. C., Shan, X. J., Qu, C. Y., and Wang, Z. J. (2016). Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan Plateau. J. Geodynam., 102, 47–57. https://doi.org/10.1016/j.jog.2016.07.005 doi: 10.1016/j.jog.2016.07.005.

Liu, B. (1995). 1:50, 000 Geological Map of the Eastern Segment of the Active Qilianshan Fault (Laohushan, Maomaoshan and Jinqianghe Fault) (in Chinese). Beijing: Seismological Publishing House.

Ludwig, L.G., Akçiz, S.O., Noriega, G. R., Zielke, O., and Arrowsmith, J. R. (2010). Climate-Modulated Channel Incision and Rupture History of the San Andreas Fault in the Carrizo Plain. Science, 327(5969), 1117–1119. https://doi.org/10.1126/science.1182837 doi: 10.1126/science.1182837.

Mazzotti, S., Leonard, L. J., Cassidy, J. F., Rogers, G. C., and Halchuk, S. (2011). Seismic hazard in western Canada from GPS strain rates versus earthquake catalog. J. Geophys. Res.: Solid Earth, 116(B12), B12310. https://doi.org/10.1029/2011jb008213 doi: 10.1029/2011jb008213.

Min, W., Zhang, P. Z., Deng, Q. D., and Mao, F. Y. (2001). Detailed study of Holocene paleoearthquakes of the Haiyuan active fault. Geol. Rev. (in Chinese), 47(1), 75–81.

Murray, J., and Segall, P. (2002). Testing time-predictable earthquake recurrence by direct measurement of strain accumulation and release. Nature, 419(6904), 287–291. https://doi.org/10.1038/nature00984 doi: 10.1038/nature00984.

Ran, Y. K., Duan, R. T., Deng, Q. D., Jiao, D. C., and Min, W. (1997). 3-D trench excavation and paleoseismology at Gaowanzi of the Haiyuan fault. Seism. Geol. (in Chinese), 19(2), 97–107.

Ren, Z. K., Zhang, Z. Q., Chen, T., Yan, S. L., Yin, J. H., Zhang, P. Z., Zheng, W. J., Zhang, H. P., and Li, C. Y. (2016). Clustering of offsets on the Haiyuan Fault and their relationship to paleoearthquakes. Geol. Soc. Am. Bull., 128(1–2), 3–18. https://doi.org/10.1130/B31155.1 doi: 10.1130/B31155.1.

Scharer, K. M., Biasi, G. P., Weldon, R. J., and Fumal, T. E. (2010). Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault. Geology, 38(6), 555–558. https://doi.org/10.1130/g30746.1 doi: 10.1130/g30746.1.

Schwartz, D. P., and Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones. J. Geophys. Res.: Solid Earth, 89(B7), 5681–5698. https://doi.org/10.1029/JB089iB07p05681 doi: 10.1029/JB089iB07p05681.

Segall, P., and Harris, R. (1987). Earthquake deformation cycle on the San Andreas Fault near Parkfield, California. J. Geophys. Res.: Solid Earth, 92(B10), 10511–10525. https://doi.org/10.1029/JB092iB10p10511 doi: 10.1029/JB092iB10p10511.

Shimazaki, K., and Nakata, T. (1980). Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett., 7(4), 279–282. https://doi.org/10.1029/GL007i004p00279 doi: 10.1029/GL007i004p00279.

Smalley, R., Ellis, M. A., Paul, J., and Van Arsdale, R. B. (2005). Space geodetic evidence for rapid strain rates in the New Madrid seismic zone of central USA. Nature, 435(7045), 1088–1090. https://doi.org/10.1038/nature03642 doi: 10.1038/nature03642.

Wang, L. F., Hainzl, S., Mai, P. M. (2015). Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling. J. Geophys. Res.: Solid Earth, 120(12), 8383–8403. https://doi.org/10.1002/2015JB011987 doi: 10.1002/2015JB011987.

Wang, L. F., Hainzl, S., and Mai, P. M. (2017). To which level did the 2010 M 8.8 Maule earthquake fill the pre-existing seismic gap? Geophys. J. Int., 211(1), 498–511. https://doi.org/10.1093/gji/ggx304 doi: 10.1093/gji/ggx304.

Wang, M., Shen, Z. K., Niu, Z. J., Zhang, Z. S., Sun, H. R., Gan, W. J., Wang, Q., and Ren, Q. (2003). Contemporary crustal deformation of the Chinese continent and tectonic block model. Sci. China Ser. D: Earth Sci., 46(2), 25–40. https://doi.org/10.1360/03dz0003 doi: 10.1360/03dz0003.

Weldon, R. J., Fumal, T. E. and Biasi, G. P.(2004). Wrightwood and the earthquake cycle: what a long recurrence record tell us about faults work. GSA Today, 14(9). https://doi.org/10.1130/1052–5173(2004)014<4:WATECW>2.0.CO;2 doi: 10.1130/1052–5173(2004)014<4:WATECW>2.0.CO;2.

Weldon, R. J., Fumal, T. E., Biasi, G. P., and Scharer, K. M. (2005). Past and Future earthquakes on the San Andreas fault. Science, 308(5724), 966–967. https://doi.org/10.1126/science.1111707 doi: 10.1126/science.1111707.

Wells, D. L., and Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am., 84(4), 974–1002.

Zhang, P.-Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z. J., Sun, J. Z., … You, X. Z. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812. https://doi.org/10.1130/g20554.1 doi: 10.1130/g20554.1.

Zhang, P. Z., Molnar, P., Burchfiel, B. C., Royden, L., Wang, Y. P., Deng, Q. D., Song, F. M., Zhang, W. Q., and Jiao, D. C. (1988a). Bounds on the Holocene slip rate of the Haiyuan fault, North-Central China. Quatern. Res., 30(2), 151–164. https://doi.org/10.1016/0033–5894(88)90020–8 doi: 10.1016/0033–5894(88)90020–8.

Zhang, P. Z., Molnar, P., Zhang, W. Q., Deng, Q. D., Wang, Y. P., Burchfiel, B. C., Song, F. M., Royden, L., and Jiao, D. C. (1988b). Bounds on the average recurrence interval of major Earthquakes along the Haiyuan Fault In North-Central China. Seism. Res. Lett., 59(3), 81–89. https://doi.org/10.1785/gssrl.59.3.81 doi: 10.1785/gssrl.59.3.81.

Zhang, P. Z., Min, W., Deng, Q. D., and Mao, F. Y. (2005). Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China. Sci. China Ser. D: Earth Sci., 48(3), 364–375. https://doi.org/10.1360/02yd0464 doi: 10.1360/02yd0464.

Zielke, O., Arrowsmith, J. R., Ludwig, L. G., and Akçiz, S. O. (2010). Slip in the 1857 and earlier large earthquakes along the Carrizo plain, San Andreas fault. Science, 327(5969), 1119–1122. https://doi.org/10.1126/science.1182781 doi: 10.1126/science.1182781.

Zielke, O., Arrowsmith, J. R., Grant Ludwig, L., and Akciz, S. O. (2012). High-Resolution Topography-Derived Offsets along the 1857 Fort Tejon Earthquake Rupture Trace, San Andreas Fault. Bull. Seism. Soc. Am., 102(3), 1135–1154. https://doi.org/10.1785/0120110230 doi: 10.1785/0120110230.


LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015


XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009


WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008


Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014


WeiMin Wang, JinLai Hao, ZhenXing Yao, 2018: Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras, Earth and Planetary Physics, 2, 86-87. doi: 10.26464/epp2018010


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()

Figures And Tables

Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang