Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Chu, R. S., Zhu, L. P., and Ding, Z. F. (2019). Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms. Earth Planet. Phys., 3(5), 444–458.doi: 10.26464/epp2019045

2019, 3(5): 444-458. doi: 10.26464/epp2019045

SOLID EARTH: SEISMOLOGY

Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms

1. 

State Key Laboratory of Geodesy and Earth’s Dynamics, Institute of Geodesy and Geophysics, Wuhan 430077, China

2. 

Department of Earth and Atmospheric Sciences, Saint Louis University, St Louis, MO 63108, USA

3. 

Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

4. 

Institute of Geophysics, China Earthquake Administration, Beijing 100083, China

Corresponding author: RiSheng Chu, chur@asch.whigg.ac.cn

Received Date: 2019-05-25
Web Publishing Date: 2019-09-01

P-wave waveforms in the distance range between 12° and 30° were analyzed to investigate upper-mantle P velocity structures beneath the Tibetan Plateau and surrounding areas. The waveform data from 504 earthquakes with magnitudes larger than 5.0 between 1990 and 2005 that occurred within 30° from the center of the Plateau were modelled. We divided the study area into 6 regions and modeled upper-mantle-distance P waveforms with turning points beneath each region separately. The results show that the upper-mantle P-wave velocity structures beneath India, the Himalayas, and the Lhasa Terrane are similar and contain a high-velocity lid about 250 km thick. The upper-mantle velocities down to 200 km beneath the Qiangtang Terrane, the Tarim Basin, and especially the Songpan-Garzê Terrane are lower than those in the south. The 410-km discontinuity beneath these two terranes is elevated by about 20 km. High-velocity anomalies are found in the transition zone below 500 km under the Lhasa and Qiangtang Terranes. The results suggest that the Tibetan Plateau was generated by thrusting of the Indian mantle lithosphere under the southern part of Tibet. Portions of the thickened Eurasian mantle lithosphere were delaminated; they are now sitting in the transition zone beneath southern Tibet and atop of the 410-km discontinuity underneath northern Tibet.

Key words: Tibetan Plateau, upper mantle structure, triplication, waveform modelling

Alsdorf, D., Makovsky, Y., Zhao, W., Brown, L. D., Nelson, K. D., Klemperer, S., Hauck, M., Ross, A., Cogan, M., … Kuo, J. (1998). INDEPTH (International Deep Profiling of Tibet and the Himalaya) multichannel seismic reflection data: description and availability. J. Geophys. Res., 103(B11), 26993–26999. https://doi.org/10.1029/98JB01078

Argand, E. (1924). La tectonique de l’Asie. In Proceedings of the 13th International Geological Congress (pp. 171-372). Brussels.222

Bao, X. W., Song, X. D., Xu, M. J., Wang, L. S., Sun, X. X., Mi, N., Yu, D. Y., and Li, H. (2013). Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth Planet. Sci. Lett., 369-370, 129–137. https://doi.org/10.1016/j.jpgl.2013.03.015

Bina, C. R. (1991). Mantle discontinuities. Rev. Geophys, 29(S2), 783–793. https://doi.org/10.1002/rog.1991.29.s2.783

Chen, W. P., and Tseng, T. L. (2007). Small 660-km seismic discontinuity beneath Tibet implies resting ground for detached lithosphere. J. Geophys. Res., 112(B5), B05309. https://doi.org/10.1029/2006JB004607

Chu, R. S., Zhu, L. P., and Helmberger, D. V. (2009). Determination of earthquake focal depths and source time functions in central Asia using teleseismic P waveforms. Geophys. Res. Lett., 36(17), L17317. https://doi.org/10.1029/2009GL039494

Chu, R. S., Schmandt, B., and Helmberger, D. V. (2012a). Juan de Fuca subduction zone from a mixture of tomography and waveform modeling. J. Geophys. Res., 117(B3), B03304. https://doi.org/10.1029/2012JB009146

Chu, R. S., Schmandt, B., and Helmberger, D. V. (2012b). Upper mantle P velocity structure beneath the Midwestern United States derived from triplicated waveforms. Geochem. Geophys. Geosyst., 13(2), Q0AK04. https://doi.org/10.1029/2011GC003818

Chu, R. S., Leng, W., Helmberger, D. V., and Gurnis, M. (2013). Hidden hotspot track beneath the eastern United States. Nat. Geosci., 6(11), 963–966. https://doi.org/10.1038/ngeo1949

Chu, R. S., Helmberger, D., and Gurnis, D. (2014). Upper mantle surprises derived from the recent Virginia earthquake waveform data. Earth Planet. Sci. Lett., 402, 167–175. https://doi.org/10.1016/j.jpgl.2012.10.023

Chu, R. S., and Helmberger, D. (2014). Lithospheric waveguide beneath the Midwestern United States; massive low-velocity zone in the lower crust. Geochem. Geophys. Geosyst., 15(4), 1348–1362. https://doi.org/10.1002/2013GC004914

De La Torre, T. L., and Sheehan, A. (2005). Broadband seismic noise analysis of the Himalayan Nepal Tibet seismic experiment. Bull. Seismol. Soc. Am., 95(3), 1202–1208. https://doi.org/10.1785/0120040098

Duan, Y. H., Tian, X. B., Liang, X. F., Li, W., Wu, C. L., Zhou, B. B., and Iqbal, J. (2017). Subduction of the Indian slab into the mantle transition zone revealed by receiver functions. Tectonophysics, 702, 61–69. https://doi.org/10.1016/j.tecto.2017.02.025

England, P., and Houseman, G. (1986). Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. J. Geophys. Res., 91(B3), 3664–3676. https://doi.org/10.1029/JB091iB03p03664

Fan, G. W., and Wallace, T. (1991). The determination of source parameters for small earthquakes from a single, very broadband seismic station. Geophys. Res. Lett., 18(8), 1385–1388. https://doi.org/10.1029/91GL01804

Gansser, A. (1980). The significance of the Himalayan suture zone. Tectonophysics, 62(1-2), 37–40, 43-52. https://doi.org/10.1016/0040-1951(80)90134-1

Guo, X. Y., Gao, R., Randy Keller, G., Xu, X., Wang, H. Y., and Li, W. H. (2013). Imaging the crustal structure beneath the eastern Tibetan Plateau and implications for the uplift of the Longmen Shan range. Earth Planet. Sci. Lett., 379, 72–80. https://doi.org/10.1016/j.jpgl.2013.08.005

He, R. Z., Zhao, D. P., Gao, R., and Zheng, H. W. (2010). Tracing the Indian lithospheric mantle beneath central Tibetan Plateau using teleseismic tomography. Tectonophysics, 491(1-4), 230–243. https://doi.org/10.1016/j.tecto.2010.03.015

Hearn, T. M., Ni, J. F., Wang, H. Y., Sandvol, E. A., and Chen, Y J. (2019). Depth-dependent P n velocities and configuration of Indian and Asian lithosphere beneath the Tibetan Plateau. Geophys. J. Int., 217(1), 179–189. https://doi.org/10.1093/gji/ggz013

Huang, J. L., and Zhao, D. P. (2006). High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res., 111(B9), B09305. https://doi.org/10.1029/2005JB004066

Johnson, M. R. W. (2002). Shortening budgets and the role of continental subduction during the India-Asia collision. Earth-Sci. Rev., 59(1-4), 101–123. https://doi.org/10.1016/S0012-8252(02)00071-5

Kao, H., Gao, R., Rau, R. J., Shi, D. N., Chen, R. Y., Guan, Y., and Wu, F. T. (2001). Seismic image of the Tarim Basin and its collision with Tibet. Geology, 29(7), 575–578. https://doi.org/10.1130/0091-7613(2001)029<0575:SIOTTB>2.0.CO;2

Lebedev, S., and Van Der Hilst, R. D. (2008). Global upper-mantle tomography with the automated multimode inversion of surface and S-wave forms. Geophys. J. Int., 173(2), 505–518. https://doi.org/10.1111/j.1365-246X.2008.03721.x

Li, C., Van der Hilst, R. D., Meltzer, A. S., and Engdahl, E. R. (2008). Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett., 274(1-2), 157–168. https://doi.org/10.1016/j.jpgl.2008.07.016

Li, H. Y., Shen, Y., Huang, Z. X., Li, X. F., Gong, M., Shi, D. N., Sandvol, E., and Li, A. B. (2014). The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography. J. Geophys. Res., 119(3), 1954–1970. https://doi.org/10.1002/2013JB010374

Liang, C. T., and Song, X. D. (2006). A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography. Geophys. Res. Lett., 33(22), L22306. https://doi.org/10.1029/2006GL027926

Liang, X. F., Chen, Y., Tian, X. B., Chen, Y. J., Ni, J., Gallegos, A., Klemperer, S. L., Wang, M. L., Xu, T., … Teng, J. W. (2016). 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth Planet. Sci. Lett., 443, 162–175. https://doi.org/10.1016/j.jpgl.2016.03.029

Liu, M., Cui, X. J., and Liu, F. T. (2004). Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision?. Tectonophysics, 393(3-4), 29–42. https://doi.org/10.1016/j.tecto.2004.07.029

Liu, Q. Y., Van Der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., Qi S. H., Wang, J., Huang, H., and Li, S. C. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci., 7(5), 361–365. https://doi.org/10.1038/ngeo2130

Lü, Y., Ni, S. D., Liu, B., and Sun, Y. S. (2011). Pn tomographic velocity and anisotropy beneath the Tibetan Plateau and the adjacent regions. Earth, Planets Space, 63(11), 1169–1173. https://doi.org/10.5047/eps.2011.07.013

Lyon-Caen, H. (1986). Comparison of the upper mantle shear wave velocity structure of the Indian Shield and the Tibetan Plateau and Tectonic Implications. Geophys. J. Int., 86(3), 727–749. https://doi.org/10.1111/j.1365-246X.1986.tb00657.x

Meltzer, A, Sarker, G., Beaudoin, B., Seeber, L., and Armbruster, J. G. (2001). Seismic characterization of an active metamorphic massif, Nanga Parbat, Pakistan Himalaya. Geology, 29(7), 651–654. https://doi.org/10.1130/0091-7613(2001)029<0651:SCOAAM>2.0.CO;2

Molnar, P., and Tapponnier, P. (1975). Cenozoic tectonics of Asia: effects of a continental collision. Science, 189(4201), 419–426. https://doi.org/10.1126/science.189.4201.419

Nelson, K. D., Zhao, W. J., Brown, L. D., Kuo, J., Che, J. K., Liu, X. W., Klemperer, S. L., Makovsky, Y., Meissner, R., … Edwards, M. (1996). Partially molten middle crust beneath southern Tibet: synthesis of Project INDEPTH results. Science, 274(5293), 1684–1688. https://doi.org/10.1126/science.274.5293.1684

Owens, T. J., Randall, G. E., Wu, F. T., and Zeng, R. S. (1993). Passcal instrument performance during the Tibetan Plateau passive seismic experiment. Bull. Seismol. Soc. Am., 83(6), 1959–1970.

Owens, T. J., and Zandt, G. (1997). Implications of crustal property variations for models of Tibetan Plateau evolution. Nature, 387(6628), 37–43. https://doi.org/10.1038/387037a0

Pan, S. Z., and Niu, F. L. (2011). Large contrasts in crustal structure and composition between the Ordos Plateau and the NE Tibetan Plateau from receiver function analysis. Earth Planet. Sci. Lett., 303(3-4), 291–298. https://doi.org/10.1016/j.jpgl.2011.01.007

Royden, L. H., Burchfiel, B. C., and Van Der Hilst, R. D. (2008). The geological evolution of the Tibetan Plateau. Science, 321(5892), 1054–1058. https://doi.org/10.1126/science.1155371

Shen, X. Z., Zhou, Y. Z., Zhang, Y. S., Mei, X. P., Guo, X., Liu, X. Z, Qin, M. Z., Wei, C. X., and Li, C. Q. (2014). Receiver function structures beneath the deep large faults in the northeastern margin of the Tibetan Plateau. Tectonophysics, 610, 63–73. https://doi.org/10.1016/j.tecto.2013.10.011

Sol, S., Meltzer, A., Bürgmann, R., Van Der Hilst, R. D., King, R., Chen, Z., Koons, P. O., Lev, E., Liu, Y. P., … Zurek, B. (2007). Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy. Geology, 35(6), 563–566. https://doi.org/10.1130/G23408A.1

Tapponnier, P., Xu, Z. Q., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., and Yang, J. S. (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547), 1671–1677. https://doi.org/10.1126/science.105978

Velasco, A. A., Gee, V. L., Rowe, C., Grujic, D., Hollister, L. S., Hernandez, D., Miller, K. C., Tobgay, T., Fort, M., Harder, S. (2007). Using small, temporary seismic networks for investigating tectonic deformation: brittle deformation and evidence for strike-slip faulting in Bhutan. Seismol. Res. Lett., 78(4), 446–453. https://doi.org/10.1785/gssrl.78.4.446

Wang, C. Y., Lou, H., Silver, P. G., Zhu, L. P., and Chang, L. J. (2010). Crustal structure variation along 30°N in the eastern Tibetan Plateau and its tectonic implications. Earth Planet. Sci. Lett., 289(3-4), 367–376. https://doi.org/10.1016/j.jpgl.2009.11.026

Xu, Q., Zhao, J. M., Yuan, X. H., Liu, H. B., and Pei, S. P. (2015). Mapping crustal structure beneath southern Tibet: seismic evidence for continental crustal underthrusting. Gondwana Res., 27(4), 1487–1493. https://doi.org/10.1016/j.gr.2014.01.006

Xu, Y., Li, Z. W., and Roecker, S. W. (2007). Uppermost mantle structure and its relation with seismic activity in the central Tien Shan. Geophys. Res. Lett., 34(10), L10304. https://doi.org/10.1029/2007GL029708

Yang, Y. J., Zheng, Y., Chen, S. Y., Zhou, S. Y., Celyan, S., Sandvol, E., Tilmann, F., Priestley, K., Hearn, T. M., … Ritzwoller, M. H. (2010). Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochem. Geophys. Geosyst., 11(8), Q08010. https://doi.org/10.1029/2010GC003119

Yao, H. J., Xu, G. M., Zhu, L. B., and Xiao, X. (2005). Mantle structure from inter-station Rayleigh wave dispersion and its tectonic implication in western China and neighboring regions. Phys. Earth Planet. Inter., 148(1), 39–54. https://doi.org/10.1016/j.pepi.2004.08.006

Yao, H. J., Van Der Hilst, R. D., and De Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis — I. Phase velocity maps. Geophys. J. Int., 166(2), 732–744. https://doi.org/10.1111/j.1365-246X.2006.03028.x

Yin, A., and Harrison, T. M. (2000). Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci., 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211

Yue, H., Chen, Y. J., Sandvol, E., Ni, J., Hearn, T., Zhou, S. Y., Feng, Y. G., Ge, Z. X., Trujillo, A., … Liu, Z. (2012). Lithospheric and upper mantle structure of the northeastern Tibetan Plateau. J. Geophys. Res., 117(B5), B05307. https://doi.org/10.1029/2011JB008545

Zhang, H., Zhao, D. P., Zhao, J. M., and Xu, Q. (2012). Convergence of the Indian and Eurasian plates under eastern Tibet revealed by seismic tomography. Geochem. Geophys. Geosyst., 13(6), Q06W14. https://doi.org/10.1029/2012GC004031

Zhang, R. Q., Wu, Q., Li, Y. H., and Zeng, R. S. (2011). Differential patterns of SH and P wave velocity structures in the transition zone beneath northwestern Tibet. Sci. China Earth Sci., 54(10), 1551–1562. https://doi.org/10.1007/s11430-011-4228-8

Zhao, J. M., Yuan, X. H., Liu, H. B., Kumar, P., Pei, S. P., Kind, R., Zhang, Z. J., Teng, J. W., Ding, L., … Wang, W. (2010). The boundary between the Indian and Asian tectonic plates below Tibet. Proc. Natl. Acad. Sci. U.S.A., 107(25), 11229–11233. https://doi.org/10.1073/pnas.1001921107

Zhao, L. S., Helmberger, D. V., and Harkrider, D. G. (1991). Shear-velocity structure of the crust and upper mantle beneath the Tibetan Plateau and southeastern China. Geophys. J. Int., 105(3), 713–730. https://doi.org/10.1111/j.1365-246X.1991.tb00807.x

Zhao, W., Mechie, J., Brown, L. D., Guo, J., Haines, S., Hearn, T., Klemperer, S. L., Ma, Y. S., Meissner, R., … Saul, J. (2001). Crustal structure of central Tibet as derived from project INDEPTH wide-angle seismic data. Geophys. J. Int., 145(2), 486–498. https://doi.org/10.1046/j.0956-540x.2001.01402.x

Zhao, W. J., Nelson, K. D., and Team, P. I. (1993). Deep seismic reflection evidence for continental underthrusting beneath southern Tibet. Nature, 366(6455), 557–559. https://doi.org/10.1038/366557a0

Zhao, W. L., and Morgan, W. J. (1985). Uplift of Tibetan Plateau. Tectonics, 4(4), 359–369. https://doi.org/10.1029/TC004i004p00359

Zhu, L. P., Owens, T. J., and Randall, G. E. (1995). Lateral variation in crustal structure of the northern Tibetan Plateau inferred from teleseismic receiver functions. Bull. Seismol. Soc. Am., 85(6), 1531–1540.

Zhu, L. P., and Helmberger, D. V. (1998). Moho offset across the northern margin of the Tibetan Plateau. Science, 281(5380), 1170–1172. https://doi.org/10.1126/science.281.5380.1170

[1]

JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017

[2]

YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038

[3]

ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

[4]

Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044

[5]

KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005

[6]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[7]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[8]

Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003

[9]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[10]

Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031

[11]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[12]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[13]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[14]

BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055

[15]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[16]

Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027

[17]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms

RiSheng Chu, LuPei Zhu, ZhiFeng Ding