Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming
, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

2019, 3(2): 157-165. doi: 10.26464/epp2019019

ATMOSPHERIC PHYSICS

The first two leading modes of the tropical Pacific and their linkage without global warming

1. 

College of Atmospheric Science, Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, Chengdu University of Information Technology, Chengdu 610225, China

2. 

State Chongqing Climate Center, Chongqing 401147, China

3. 

Beijing Meteorological Service, Beijing 100875, China

Corresponding author: QuanLiang Chen, chenql@cuit.edu.cn

Received Date: 2018-12-31
Web Publishing Date: 2019-03-01

A discrepancy remains in the first two leading empirical orthogonal function (EOF) modes of the tropical Pacific sea surface temperature anomaly (SSTA) based on observations since the 1980s. The EOF1 mode, representing the El Niño-Southern Oscillation (ENSO), is a robust result. However, the EOF2 features either El Niño Modoki (EM) or ENSO evolution during different periods, which is probably associated with the impacts of global warming. The underlying question is what the EOF2 mode of the tropical Pacific would be without global warming. Using the CMIP5 preindustrial scenario to exclude the influence of global warming, we find that the EOF1 mode of the tropical Pacific SSTA represents ENSO and that the EOF2 mode is not EM. According to the lead–lag correlation between the ENSO and EOF2 modes, the linkage between these two modes is as follows: …El Niño → EOF2 → La Niña → –EOF2 → El Niño…. By analyzing the evolution of sea surface temperature, surface wind, and subsurface ocean temperature anomalies, we find the mechanism linking the ENSO and EOF2 modes is the air–sea interaction associated with the ENSO cycle. This result suggests that the EOF2 mode represents an aspect of ENSO evolution under preindustrial conditions. Therefore, this study further indicates that the EM is probably due to the influence of global warming.

Key words: El Niño-Southern Oscillation (ENSO), ENSO evolution, global warming, air–sea interaction

Ashok, K., Behera, S. K., Rao, S. A., Weng, H. Y., and Yamagata, T. (2007). El Niño Modoki and its possible teleconnection. J. Geophys. Res. Oceans, 112(C11), C11007. https://doi.org/10.1029/2006JC003798

Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J. (2014). ENSO representation in climate models: From CMIP3 to CMIP5. Climate Dyn., 42(7-8), 1999–2018. https://doi.org/10.1007/s00382-013-1783-z

Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., … Kristjánsson, J. E. (2013). The Norwegian earth system model, NorESM1-M—Part 1: Description and basic evaluation of the physical climate. Geosci. Model Dev., 6(3), 687–720. https://doi.org/10.5194/gmd-6-687-2013

Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev., 97(3), 163–172. https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2

Bleck, R., and Smith, L. T. (1990). A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean: 1. Model development and supporting experiments. J. Geophys. Res. Oceans, 95(C3), 3273–3285. https://doi.org/10.1029/JC095iC03p03273

Bleck, R., Rooth, C., Hu, D. M., and Smith, L. T. (1992). Salinity-driven thermocline transients in a wind- and thermohaline-forced isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr., 22(12), 1486–1505. https://doi.org/10.1175/1520-0485(1992)022<1486:SDTTIA>2.0.CO;2

Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and Bladé, I. (1999). The effective number of spatial degrees of freedom of a time-varying field. J. Climate, 12(7), 1990–2009. https://doi.org/10.1175/1520-0442(1999)012<1990:TENOSD>2.0.CO;2

Capotondi, A. (2013). ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res. Oceans, 118(10), 4755–4770. https://doi.org/10.1002/jgrc.20335

Capotondi, A., Wittenberg, A. T., Newman, M., Di Lorenzo, E., Yu, J. Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., … Yeh, S. W. (2015). Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96(6), 921–938. https://doi.org/10.1175/BAMS-D-13-00117.1

Carton, J. A., and Giese, B. S. (2008). A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev., 136(8), 2999–3017. https://doi.org/10.1175/2007MWR1978.1

Collins, M., An, S. I., Cai, W. J., Ganachaud, A., Guilyardi, E., Jin, F. F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G., and Wittenberg, A. (2010). The impact of global warming on the tropical Pacific ocean and El Niño. Nat. Geosci., 3(6), 391–397. https://doi.org/10.1038/ngeo868

Deser, C., Alexander, M. A., Xie, S. P., and Phillips, A. S. (2010). Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar. Sci., 2, 115–143. https://doi.org/10.1146/annurev-marine-120408-151453

Feng, J., and Li, J. P. (2011). Influence of El Niño Modoki on spring rainfall over south China. J. Geophys. Res. Atmos., 116(D13), D13102. https://doi.org/10.1029/2010JD015160

Fernández, N. C., Herrera, R. G., Puyol, D. G., Martín, E. H., García, R. R., Presa, L. G., and Rodríguez, P. R. (2004). Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979-2000. J. Climate, 17(20), 3934–3946. https://doi.org/10.1175/1520-0442(2004)017<3934:AOTESI>2.0.CO;2

Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevåg, A., Seland, Ø., Drange, H., Kristjánsson, J. E., Medhaug, I., … Seierstad, I. A. (2013). The Norwegian earth system model, NorESM1-M—Part 2: Climate response and scenario projections. Geosci. Model Dev., 6(2), 389–415. https://doi.org/10.5194/gmd-6-389-2013

Jha, B., Hu, Z. Z., and Kumar, A. (2014). SST and ENSO variability and change simulated in historical experiments of CMIP5 models. Climate Dyn., 42(7-8), 2113–2124. https://doi.org/10.1007/s00382-013-1803-z

Jin, F. F. (1997a). An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J. Atmos. Sci., 54(7), 811–829. https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2

Jin, F. F. (1997b). An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54(7), 830–847. https://doi.org/10.1175/1520-0469(1997)054<0830:AEORPF>2.0.CO;2

Jin, F. F., An, S. I., Timmermann, A., and Zhao, J. X. (2003). Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30(3), 1120. https://doi.org/10.1029/2002GL016356

Kang, I. S., An, S. I., and Jin, F. F. (2001). A systematic approximation of the SST anomaly equation for ENSO. J. Meteor. Soc. Japan, 79(1), 1–10. https://doi.org/10.2151/jmsj.79.1

Kao, H. Y., and Yu, J. Y. (2009). Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22(3), 615–632. https://doi.org/10.1175/2008JCLI2309.1

Karnauskas, K. B. (2013). Can we distinguish canonical El Niño from Modoki?. Geophys Res. Lett., 40(19), 5246–5251. https://doi.org/10.1002/grl.51007

Kelly, P. M., and Jones, P. D. (1996). Removal of the El Niño-Southern Oscillation signal from the gridded surface air temperature data set. J. Geophys. Res. Atmos., 101(D14), 19013–19022. https://doi.org/10.1029/96JD01173

Kim, S. T., and Jin, F. F. (2011). An ENSO stability analysis. Part Ⅱ: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Climate Dyn., 36(7-8), 1609–1627. https://doi.org/10.1007/s00382-010-0872-5

Kim, S. T., Cai, W. J., Jin, F. F., and Yu, J. Y. (2014a). ENSO stability in coupled climate models and its association with mean state. Climate Dyn., 42(11-12), 3313–3321. https://doi.org/10.1007/s00382-013-1833-6

Kim, S. T., Cai, W. J., Jin, F. F., Santoso, A., Wu, L. X., Guilyardi, E., and An, S. I. (2014b). Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Climate Change, 4(9), 786–790. https://doi.org/10.1038/nclimate2326

Kug, J. S., Jin, F. F., and An, S. I. (2009). Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22(6), 1499–1515. https://doi.org/10.1175/2008JCLI2624.1

Larkin, N. K., and Harrison, D. E. (2005). On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32(13), L13705. https://doi.org/10.1029/2005GL022738

Lee, T., and McPhaden, M. J. (2010). Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37(14), L14603. https://doi.org/10.1029/2010gl044007

Lemmon, D. E., and Karnauskas, K. B. (2018). A metric for quantifying El Niño pattern diversity with implications for ENSO–mean state interaction. Climate Dyn., https://doi.org/10.1007/s00382-018-4194-3222

Li, J. P., Feng, J., and Li, Y. (2012). A possible cause of decreasing summer rainfall in northeast Australia. Int. J. Climatol., 32(7), 995–1005. https://doi.org/10.1002/joc.2328

Li, J. P., Sun, C., and Jin, F. F. (2013). NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett., 40(20), 5497–5502. https://doi.org/10.1002/2013GL057877

Li, Y., Li, J. P., Zhang, W. J., Zhao, X., Xie, F., and Zheng, F. (2015). Ocean dynamical processes associated with the tropical Pacific cold tongue mode. J. Geophys. Res. Oceans, 120(9), 6419–6435. https://doi.org/10.1002/2015JC010814

Li, Y., Li, J. P., Zhang, W. J., Chen, Q. L., Feng, J., Zheng, F., Wang, W., and Zhou, X. (2017). Impacts of the tropical Pacific cold tongue mode on ENSO diversity under global warming. J. Geophys. Res. Oceans, 122(11), 8524–8542. https://doi.org/10.1002/2017JC013052

Marathe, S., Ashok, K., Swapna, P., and Sabin, T. P. (2015). Revisiting El Niño Modokis. Climate Dyn., 45(11-12), 3527–3545. https://doi.org/10.1007/s00382-015-2555-8

North, G. R., Bell, T. L., Cahalan, R. F., and Moeng, F. J. (1982). Sampling errors in the estimation of empirical orthogonal functions. Mon. Weather Rev., 110(7), 699–706. https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2

Pausata, F. S. R., Chafik, L., Caballero, R., and Battisti, D. S. (2015). Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl Acad. Sci. USA, 112(45), 13784–13788. https://doi.org/10.1073/pnas.1509153112

Rasmusson, E. M., and Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Weather Rev., 110(5), 354–384. https://doi.org/10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2

Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos., 108(D14), 4407. https://doi.org/10.1029/2002JD002670

Ren, H. L., and Jin, F. F. (2011). Niño indices for two types of ENSO. Geophys. Res. Lett., 38(4), L04704. https://doi.org/10.1029/2010GL046031

Ren, H. L., and Jin, F. F. (2013). Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26(17), 6506–6523. https://doi.org/10.1175/JCLI-D-12-00601.1

Ren, H. L., Jin, F. F., Tian, B., and Scaife, A. A. (2016). Distinct persistence barriers in two types of ENSO. Geophys. Res. Lett., 43(20), 10973–10979. https://doi.org/10.1002/2016GL071015

Risbey, J. S., Lewandowsky, S., Langlais, C., Monselesan, D. P., O’Kane, T. J., and Oreskes, N. (2014). Well-estimated global surface warming in climate projections selected for ENSO phase. Nat. Climate Change, 4(9), 835–840. https://doi.org/10.1038/nclimate2310

Takahashi, K., Montecinos, A., Goubanova, K., and Dewitte, B. (2011). ENSO regimes: Reinterpreting the canonical and Modoki El Niño. Geophys. Res. Lett., 38(10), L10704. https://doi.org/10.1029/2011GL047364

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

Trenberth, K. E., and Stepaniak, D. P. (2001). Indices of El Niño evolution. J. Climate, 14(8), 1697–1701. https://doi.org/10.1175/1520-0442(2001)014<1697:LIOENO>2.0.CO;2

Trenberth, K. E., Stepaniak, D. P., and Caron, J. M. (2002a). Interannual variations in the atmospheric heat budget. J. Geophys. Res. Atmos., 107(D8), AAC 4-1–AAC 4-15. https://doi.org/10.1029/2000JD000297

Trenberth, K. E., Caron, J. M., Stepaniak, D. P., and Worley, S. (2002b). Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res. Atmos., 107(D8), AAC 5-1–AAC 5-17. https://doi.org/10.1029/2000JD000298

Trenberth, K. E., and Fasullo, J. T. (2013). An apparent hiatus in global warming?. Earth’s Future, 1(1), 19–32. https://doi.org/10.1002/2013EF000165

Wallace, J. M., and Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev., 109(4), 784–812. https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2

Weng, H. Y., Ashok, K., Behera, S. K., Rao, S. A., and Yamagata, T. (2007). Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Climate Dyn., 29(2-3), 113–129. https://doi.org/10.1007/s00382-007-0234-0

Weng, H. Y., Behera, S. K., and Yamagata, T. (2009). Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32(5), 663–674. https://doi.org/10.1007/s00382-008-0394-6

Xie, F., Li, J., Tian, W., Feng, J., and Huo, Y. (2012). Signals of El Niño Modoki in the tropical tropopause layer and stratosphere. Atmos. Chem. Phys., 12(11), 5259–5273. https://doi.org/10.5194/acp-12-5259-2012

Xie, F., Li, J. P., Tian, W. S., Fu, Q., Jin, F. F., Hu, Y. Y., Zhang, J. K., Wang, W. K., Sun, C., … Ding, R. Q. (2016). A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett., 11(12), 124026. https://doi.org/10.1088/1748-9326/11/12/124026

Xie, F., Li, J. P., Zhang, J. K., Tian, W. S., Hu, Y. Y., Zhao, S., Sun, C., Ding, R. Q., Feng, J., and Yang, Y. (2017). Variations in North Pacific sea surface temperature caused by Arctic stratospheric ozone anomalies. Environ. Res. Lett., 12(11), 114023. https://doi.org/10.1088/1748-9326/aa9005

Yang, R. W., Xie, Z., and Cao, J. (2017). A dynamic index for the westward ridge point variability of the Western Pacific subtropical high during summer. J. Climate, 30(9), 3325–3341. https://doi.org/10.1175/JCLI-D-16-0434.1

Yang, R. W., Wang, J., Zhang, T. Y., and He, S. P. (2019). Change in the relationship between the Australian summer monsoon circulation and boreal summer precipitation over Central China in the late 1990s. Meteor. Atmos. Phys., 131(1), 105–113. https://doi.org/10.1007/s00703-017-0556-3

Yeh, S. W., Kug, J. S., Dewitte, B., Kwon, M. H., Kirtman, B. P., and Jin, F. F. (2009). El Niño in a changing climate. Nature, 461(7263), 511–514. https://doi.org/10.1038/nature08316

Yulaeva, E., and Wallace, J. M. (1994). The signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Climate, 7(11), 1719–1736. https://doi.org/10.1175/1520-0442(1994)007<1719:TSOEIG>2.0.CO;2

Zhang, W. J., Li, J. P., and Zhao, X. (2010). Sea surface temperature cooling mode in the Pacific cold tongue. J. Geophys. Res. Oceans, 115(C12), C12042. https://doi.org/10.1029/2010JC006501

Zhang, W. J., Jin, F. F., Li, J. P., and Ren, H. L. (2011). Contrasting impacts of two-type El Niño over the western north Pacific during boreal autumn. J. Meteor. Soc. Japan, 89(5), 563–569. https://doi.org/10.2151/jmsj.2011-510

Zhang, W. J., Jin, F. F., Zhao, J. X., Qi, L., and Ren, H. L. (2013). The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in southwest China. J. Climate, 26(21), 8392–8405. https://doi.org/10.1175/JCLI-D-12-00851.1

Zhang, W. J., Jin, F. F., and Turner, A. (2014). Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett., 41(11), 4020–4026. https://doi.org/10.1002/2014GL060130

Zheng, F., Zhu, J., Zhang, R. H., and Zhou, G. Q. (2006). Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33(19), L19604. https://doi.org/10.1029/2006GL026994

Zheng, F., Li, J. P., Clark, R. T., and Nnamchi, H. C. (2013). Simulation and projection of the Southern Hemisphere annular mode in CMIP5 models. J. Climate, 26(24), 9860–9879. https://doi.org/10.1175/JCLI-D-13-00204.1

Zheng, F., Fang, X. H., Yu, J. Y., and Zhu, J. (2014). Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys. Res. Lett., 41(21), 7651–7657. https://doi.org/10.1002/2014GL062125

Zheng, F., and Zhu, J. (2016). Improved ensemble-mean forecasting of ENSO events by a zero-mean stochastic error model of an intermediate coupled model. Climate Dyn., 47(12), 3901–3915. https://doi.org/10.1007/s00382-016-3048-0

Zheng, F., Fang, X. H., Zhu, J., Yu, J. Y., and Li, X. C. (2016). Modulation of Bjerknes feedback on the decadal variations in ENSO predictability. Geophys. Res. Lett., 43(24), 12560–12568. https://doi.org/10.1002/2016GL071636

Zheng, F., and Yu, J. Y. (2017). Contrasting the skills and biases of deterministic predictions for the two types of El Niño. Adv. Atmos. Sci., 34(12), 1395–1403. https://doi.org/10.1007/s00376-017-6324-y

[1]

Jian Rao, YueYue Yu, Dong Guo, ChunHua Shi, Dan Chen, DingZhu Hu, 2019: Evaluating the Brewer–Dobson circulation and its responses to ENSO, QBO, and the solar cycle in different reanalyses, Earth and Planetary Physics, 3, 166-181. doi: 10.26464/epp2019012

[2]

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

[3]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[4]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[5]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[6]

Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031

[7]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[8]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[9]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

The first two leading modes of the tropical Pacific and their linkage without global warming

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li