Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics. doi: 10.26464/epp2019001

doi: 10.26464/epp2019001

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Excitation of extremely low-frequency chorus emissions: The role of background plasma density

1. 

School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

School of Physics and Astronomy, University of Minnesota, Twin Cities, Minneapolis, USA

3. 

Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Corresponding author: ZhiGang Yuan, y_zgang@vip.163.com

Received Date: 2018-09-21
Web Publishing Date: 2019-01-01

Low-frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts. However, the mechanism (s) generating these low-frequency chorus emissions have not been well understood. . In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 fce (typical ordinary chorus) to 0.02 fce (extremely low-frequency chorus). Those extremely low-frequency chorus waves were observed in a rather dense plasma, where the number density Ne was found to be several times larger than has been associated with observations of ordinary chorus waves. For suprathermal electrons whose free energy is supplied by anisotropic temperatures, linear growth rates (calculated using in-situ plasma parameters measured by the Van Allen Probes) show that whistler mode instability can occur at frequencies below 0.1 fce when the background plasma density Ne increases. Especially when Ne reaches 90 cm–3 or more, the lowest unstable frequency can extend to 0.02 fce or even less, which is consistent with satellite observations. Therefore, our results demonstrate that a dense background plasma could play an essential role in the excitation of extremely low-frequency chorus waves by controlling the wave growth rates.

Key words: low-frequency chorus emissions, anisotropic temperature instability, whistler mode, Van Allen Probes, linear growth rate

Bell, T. F., Inan, U. S., Haque, N., and Pickett, J. S. (2009). Source regions of banded chorus. Geophys. Res. Lett., 36(11), L11101. https://doi.org/10.1029/2009GL037629

Cattell, C. A., Breneman, A. W., Thaller, S. A., Wygant, J. R., Kletzing, C. A., and Kurth, W. S. (2015). Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study. Geophys. Res. Lett., 42(18), 7273–7281. https://doi.org/10.1002/2015GL065565

Chen, L., R. M. Thorne, V. K. Jordanova, C.-P. Wang, M. Gkioulidou, L. Lyons, and R. B. Horne (2010). Global simulation of EMIC wave excitation during the 21 April 2001 storm from coupled RCM-RAM-HOTRAY modeling. J. Geophys. Res., 115, A07209. https://doi.org/10.1029/2009JA015075

Chen, L. J., Thorne, R. M., Li, W., and Bortnik, J. (2013). Modeling the wave normal distribution of chorus waves. J. Geophys. Res. Space Phys., 118(3), 1074–1088. https://doi.org/10.1029/2012JA018343

Chen, Y., Reeves, G. D., and Friedel, R. H. W. (2007). The energization of relativistic electrons in the outer Van Allen radiation belt. Nat. Phys., 3(9), 614–617. https://doi.org/10.1038/nphys655

Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., Henderson, K. C., Kihara, K. H., Lake, J. E., … Chen, J. (2013). Helium, oxygen, proton, and electron (HOPE) mass spectrometer for the radiation belt storm probes mission. Space Sci. Rev., 179(1–4), 423–484. https://doi.org/10.1007/s11214-013-9968-7

Gao, Z. L., Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., Shen, C., and Wang, S. (2016). Intense low-frequency chorus waves observed by Van Allen Probes: Fine structures and potential effect on radiation belt electrons. Geophys. Res. Lett., 43(3), 967–977. https://doi.org/10.1002/2016GL067687

Goldstein, J., De Pascuale, S., Kletzing, C., Kurth, W., Genestreti, K. J., Skoug, R. M., Larsen, B. A., Kistler, L. M., Mouikis, C., and Spence, H. (2014). Simulation of Van Allen Probes plasmapause encounters. J. Geophys. Res. Space Phys., 119(9), 7464–7484. https://doi.org/10.1002/2014JA020252

Gurnett, D. A., and O'Brien, B. J. (1964). High-latitude geophysical studies with satellite Injun 3:5. Very-low-frequency electromagnetic radiation. J. Geophys. Res., 69(1), 65–89. https://doi.org/10.1029/JZ069i001p00065

Horne, R. B., and Thorne, R. M. (1993). On the preferred source location for the convective amplification of ion cyclotron waves. J. Geophys. Res. Space Phys., 98(A6), 9233–9247. https://doi.org/10.1029/92JA02972

Huang J., Gu X. D., Ni B. B., Luo Q., Fu S., Xiang Z., and Zhang W. X. (2018). Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons. Earth Planet. Phys., 2(5), 371–383. https://doi.org/10.26464/epp2018035

Jordanova, V. K., Thorne, R. M., Li, W., and Miyoshi, Y. (2010). Excitation of whistler mode chorus from global ring current simulations. J. Geophys. Res. Space Phys., 115(A5), A00F10. https://doi.org/10.1029/2009JA014810

Katoh, Y., and Omura, Y. (2011). Amplitude dependence of frequency sweep rates of whistler mode chorus emissions. J. Geophys. Res. Space Phys., 116(A7), A07201. https://doi.org/10.1029/2011JA016496

Kennel, C. (1966). Low-frequency whistler mode. Phys. Fluids, 9(11), 2190–2202. https://doi.org/10.1063/1.1761588

Kim, J.-H., Lee, D. Y., Cho, J. H., Shin, D. K., Kim, K. C., Li, W., and Kim, T. K. (2015). A prediction model for the global distribution of whistler chorus wave amplitude developed separately for two latitudinal zones. J. Geophys. Res. Space Phys., 120(4), 2819–2837. https://doi.org/10.1002/2014JA020900

Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179(1–4), 127–181. https://doi.org/10.1007/s11214-013-9993-6

LeDocq, M. J., Gurnett, D. A., and Hospodarsky, G. B. (1998). Chorus source locations from VLF Poynting flux measurements with the Polar spacecraft. Geophys. Res. Lett., 25(21), 4063–4066. https://doi.org/10.1029/1998GL900071

Li, W., Bortnik, J., Thorne, R. M., and Angelopoulos, V. (2011). Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations. J. Geophys. Res. Space Phys., 116(A12), A12205. https://doi.org/10.1029/2011JA017035

Li, W., Thorne, R. M., Bortnik, J., Tao, X., and Angelopoulos, V. (2012). Characteristics of hiss-like and discrete whistler-mode emissions. Geophys. Res. Lett., 39(18), L18106. https://doi.org/10.1029/2012GL053206

Li, W., Bortnik, J., Thorne, R. M., Cully, C. M., Chen, L., Angelopoulos, V., Nishimura, Y., Tao, J. B., Bonnell, J. W., and LeContel, O. (2013). Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS. J. Geophys. Res. Space Phys., 118(4), 1461–1471. https://doi.org/10.1002/jgra.50176

Li, W., Chen, L., Bortnik, J., Thorne, R. M., Angelopoulos, V., Kletzing, C. A., Kurth, W. S., and Hospodarsky, G. B. (2015). First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation. Geophys. Res. Lett., 42(2), 241–248. https://doi.org/10.1002/2014GL062832

Meredith, N. P., Horne, R. B., Thorne, R. M., and Anderson, R. R. (2003). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth’s outer radiation belt. Geophys. Res. Lett., 30(16), 1871. https://doi.org/10.1029/2003GL017698

Meredith, N. P., Horne, R. B., Li, W., Thorne, R. M., and Sicard-Piet, A. (2014). Global model of low-frequency chorus (fLHR < f <0.1 fce) from multiple satellite observations. Geophys. Res. Lett., 41(2), 280–286. https://doi.org/10.1002/2013GL059050

Moullard, O., Masson, A., Laakso, H., Parrot, M., Décréau, P., Santolik, O., and Andre, M. (2002). Density modulated whistler mode emissions observed near the plasmapause. Geophys. Res. Lett., 29(20), 36-1–36-4. https://doi.org/10.1029/2002GL015101

Olsen R. C., Shawhan S. D., Gallagher D. L., Green J. L., Chappell C. R., and Anderson R. R. (1987). Plasma observations at the Earth’s magnetic equator. J. Geophys. Res. Space Phys., 92(A3), 2385–2407. https://doi.org/10.1029/JA092iA03p02385

Omura, Y., Furuya, N., and Summers, D. (2007). Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field. J. Geophys. Res. Space Phys., 112(A6), A06236. https://doi.org/10.1029/2006JA012243

Omura, Y., Katoh, Y., and Summers, D. (2008). Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res. Space Phys., 113(A4), A04223. https://doi.org/10.1029/2007JA012622

Omura, Y., Nakamura, S., Kletzing, C. A., Summers, D., and Hikishima, M. (2015). Nonlinear wave growth theory of coherent hiss emissions in the plasmasphere. J. Geophys. Res. Space Phys., 120(9), 7642–7657. https://doi.org/10.1002/2015JA021520

Santolík, O., Gurnett, D. A., Pickett, J. S., Parrot, M., and Cornilleau-Wehrlin, N. (2003a). Spatio-temporal structure of storm-time chorus. J. Geophys. Res. Space Phys., 108(A7), 1278. https://doi.org/10.1029/2002JA009791

Santolík, O., Parrot, M., and Lefeuvre, F. (2013b). Singular value decomposition methods for wave propagation analysis. Radio Sci., 38(1), 1010. https://doi.org/10.1029/2000RS002523

Shprits, Y. Y., Li, W., and Thorne, R. M. (2006). Controlling effect of the pitch angle scattering rates near the edge of the loss cone on electron lifetimes. J. Geophys. Res. Space Phys., 111(A12), A12206. https://doi.org/10.1029/2006JA011758

Shprits, Y. Y., Subbotin, D. A., Meredith, N. P., and Elkington, S. R. (2008). Review of modeling of losses and sources of relativistic electrons in the outer radiation belt Ⅱ: Local acceleration and loss. J. Atmos. Sol. Terr. Phys., 70(14), 1694–1713. https://doi.org/10.1016/j.jastp.2008.06.014

Shue, J. H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., and Singer, H. J. (1997). A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res. Space Phys., 102(A5), 9497–9511. https://doi.org/10.1029/97JA00196

Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S. (2011). CRRES observation and STEERB simulation of the 9 October 1990 electron radiation belt dropout event. Geophys. Res. Lett., 38(6), L06106. https://doi.org/10.1029/2011GL046873

Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Wang, Y. M., Zong, Q. G., He, Z. G., Shen, C., Zhang, M., … Baker, D. N. (2015). Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt. J. Geophys. Res. Space Phys., 119(12), 10023–10040. https://doi.org/10.1002/2014JA020709

Su, Z. P., Liu, N. G., Zheng, H. N., Wang, Y. M., and Wang, S. (2018). Large-amplitude extremely low frequency hiss waves in plasmaspheric plumes. Geophys. Res. Lett., 45(1), 565–577. https://doi.org/10.1002/2017GL076754

Summers, D., Ni, B. B., and Meredith, N. P. (2007). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J. Geophys. Res. Space Phys., 112(A4), A04207. https://doi.org/10.1029/2006JA011993

Summers, D., Tang, R. X., and Omura, Y. (2012). Linear and nonlinear growth of magnetospheric whistler mode waves. In D. Summers, et al. (Eds.), Dynamics of the Earth's Radiation Belts and Inner Magnetosphere. Washington: American Geophysical Union. https://doi.org/10.1029/2012GM001298222

Tao, X., Chen, L., Liu, X., Lu, Q., and Wang, S. (2017). Quasilinear analysis of saturation properties of broadband whistler mode waves. Geophys. Res. Lett., 44(16), 8122–8129. https://doi.org/10.1002/2017GL074881

Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., Baker, D. N., Spence, H. E., Reeves, G. D., … Kanekal, S. G. (2013). Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature, 504(7480), 411–414. https://doi.org/10.1038/nature12889

Tsurutani, B. T., and Smith, E. J. (1974). Postmidnight chorus: A substorm phenomenon. J. Geophys. Res. Space Phys., 79(1), 118–127. https://doi.org/10.1029/JA079i001p00118

Woodroffe, J. R., Jordanova, V. K., Funsten, H. O., Streltsov, A. V., Bengtson, M. T., Kletzing, C. A., Wygant, J. R., Thaller, S. A., and Breneman, A. W. (2017). Van Allen Probes observations of structured whistler mode activity and coincident electron Landau acceleration inside a remnant plasmaspheric plume. J. Geophys. Res. Space Phys., 122(3), 3073–3086. https://doi.org/10.1002/2015JA022219

Wygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., Ludlam, M., Turin, P., Harvey, P. R., .. Tao, J. B. (2013). The electric field and waves instruments on the radiation belt storm probes mission. Space Sci. Rev., 179(1–4), 183–220. https://doi.org/10.1007/s11214-013-0013-7

Xiao, F. L., Liu, S., Tao, X., Su, Z. P., Zhou, Q. H., Yang, C., He, Z. G., He, Y. H., Gao, Z. L., … Blake, J. B. (2017). Generation of extremely low frequency chorus in Van Allen radiation belts. J. Geophys. Res. Space Phys., 122(3), 3201–3211. https://doi.org/10.1002/2016JA023561

Yu, X. D., Yuan, Z. G., Wang, D. D., Huang, S. Y., Qiao, Z., Yu, T., and Yao, F. (2016). Excitation of oblique O+ band EMIC waves in the inner magnetosphere driven by hot H+ with ring velocity distributions. J. Geophys. Res. Space Phys., 121(11), 11101–11112. https://doi.org/10.1002/2016JA023221

Yu, X. D., Yuan, Z. G., Li, H. M., Huang, S. Y., Wang, D. D., Yao, F., Funsten, H. O., and Wygant, J. R. (2018). Response of banded whistler mode waves to the enhancement of solar wind dynamic pressure in the inner Earth’s magnetosphere. Geophys. Res. Lett., 45(17), 8755–8763. https://doi.org/10.1029/2018GL078849

Yuan, Z. G., Yu, X. D., Huang, S. Y., Wang, D. D., and Funsten, H. O. (2017). In situ observations of magnetosonic waves modulated by background plasma density. Geophys. Res. Lett., 44(15), 7628–7633. https://doi.org/10.1002/2017GL074681

Yuan, Z. G., Yu, X. D., Huang, S. Y., Qiao, Z., Yao, F., and Funsten, H. O. (2018). Cold ion heating by magnetosonic waves in a density cavity of the plasmasphere. J. Geophys. Res. Space Phys., 123(2), 1242–1250. https://doi.org/10.1002/2017JA024919

Zhou, Q. H., Xiao, F. L., Yang, C., Liu, S., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Reeves, G. D., .. Wygant, J. R. (2014). Excitation of nightside magnetosonic waves observed by Van Allen Probes. J. Geophys. Res. Space Phys., 119(11), 9125–9133. https://doi.org/10.1002/2014JA020481

[1]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[2]

Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003

[3]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Excitation of extremely low-frequency chorus emissions: The role of background plasma density

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten