Examples of unusual ionospheric observations by the CSES prior to earthquakes

Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

2018, 2(6): 515-526. doi: 10.26464/epp2018050

SPACE PHYSICS

Examples of unusual ionospheric observations by the CSES prior to earthquakes

The Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China

Corresponding author: Rui Yan, yanxiaoxiao_best@163.comXuHui Shen, shenxh@seis.ac.cn

Received Date: 2018-10-05
Web Publishing Date: 2018-11-01

The CSES (China seismic electromagnetic satellite) was launched on February 2, 2018 in a circular polar orbit at an altitude of ~507 km. One of the main objectives of CSES is to search for and characterize ionospheric perturbations that can be associated with seismic activities, to better understand the generation mechanism of such perturbations. Its scientific payload can measure a broad frequency range of electromagnetic waves and some important plasma parameters. This paper is a first-hand study of unusual observations recorded by the CSES over seismic regions prior to four earthquakes with M >7.0 since the satellite's launch. CSES detectors measured irregularities near the epicenter of these four earthquakes. It is already clear that data from instruments onboard the CSES will be of significant help in studies of characteristics of ionospheric perturbations related to earthquakes and their generation mechanisms.

Key words: CSES; ionospheric perturbations; earthquake

Afonin, V. V., Molchanov, O. A., Kodama, T., Hayakawa, M., and Akentieva, O. A. (1999). Statistical study of ionospheric plasma response to seismic activity: Search for reliable result from satellite observations. In Hayakawa, M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes (pp. 597–617). Tokyo, Japan: Terra Scientific Publishing Company.222

Akhoondzadeh, M., Parrot, M., and Saradjian, M. R. (2010). Investigation of VLF and HF waves showing seismo-ionospheric anomalies induced by the 29 September 2009 Samoa earthquake (Mw=8.1). Nat. Hazards Earth Syst. Sci., 10(5), 1061–1067. https://doi.org/10.5194/nhess-10-1061-2010

Ambrosi, G., Bartocci, S., Basara, L., Battiston, R., Burger, W. J., Carfora, L., Castellini, G., Cipollone, P., Conti, L., … Vitale, V. (2018). The HEPD particle detector of the CSES satellite mission for investigating seismo-associated perturbations of the Van Allen belts. Sci. China Technol. Sci., 61(5), 643–652. https://doi.org/10.1007/s11431-018-9234-9

Bhattacharya, S., and Gwal, A. K. (2005). Observations made by DEMETER micro-satellite for ultra low frequency and extremely low frequency emissions during Indonesian earthquake. In Proceedings of XXXVIII General Assembly of International Union of Radio Science. India.222

Bhattacharya, S., Sarkar, S., Gwal, A. K., and Parrot, M. (2007). Satellite and ground-based ULF/ELF emissions observed before Gujarat earthquake in March 2006. Curr. Sci., 93(1), 41–46

Cao, J. B., Zeng, L., Zhan, F., Wang, Z. G., Wang, Y., Chen, Y., Meng, Q. C., Ji, Z. Q., Wang P. F., … Ma, L. Y. (2018). The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci. China Technol. Sci., 61(5), 653–658. https://doi.org/10.1007/s11431-018-9241-7

Cheng, B. J., Zhou, B., Magnes, W., Lammegger, R., and Pollinger, A. (2018). High precision magnetometer for geomagnetic exploration onboard of the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci., 61(5), 659–668. https://doi.org/10.1007/s11431-018-9247-6

Chen, L., Ou, M., Yuan, Y. P., Sun, F., Yu, X., and Zhen, W. M. (2018). Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1. Earth Planet. Phys., 2(6), 505–514. https://doi.org/10.26464/epp2018049

Chmyrev, V. M., Isaev, N. V., Bilichenko, S. V., and Stanev, G. (1989). Observation by space-borne detectors of electric fields and hydromagnetic waves in the ionosphere over an earthquake center. Phys. Earth Planet. Interi., 57(1–2), 110–114. https://doi.org/10.1016/0031-9201(89)90220-3

Cheng, Y., Lin, J., Shen, X. H., Wan, X., Li, X. X., and Wang, W. J. (2018). Analysis of GNSS radio occultation data from satellite ZH-01. Earth Planet. Phys., 2(6), 499–504. https://doi.org/10.26464/epp2018048

Chu, W., Huang, J. P., Shen, X. H., Wang, P., Li, X. Q., An, Z. H., Xu, Y. B., and Liang, X. H. (2018). Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite. Earth Planet. Phys., 2(6), 489–498. https://doi.org/10.26464/epp2018047

De Santis A., De Franceschi, G., Spogli, L., Perrone, L., Alfonsi, L., Qamili, E., Cianchini, G., Di Giovambattista, R., Salvi, S., … Tao, D. (2015). Geospace perturbations induced by the Earth: the state of the art and future trends. Phys. Chem. Earth, 85–86, 17–33. https://doi.org/10.1016/j.pce.2015.05.004

Ding, Z. H., Wu, J., Su, S. J., Chen, J. S., and Ban, P. P. (2010). The variation of ionosphere on some days before the Wenchuan Earthquake. Chinese J. Geophys.(in Chinese) , 53(1), 30–38. https://doi.org/10.3969/j.issn.0001-5733.2010.01.004

Freund, F. (2011). Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci., 41(4–5), 383–400. https://doi.org/10.1016/j.jseaes.2010.03.009

Freund, F. T., Kulahci, I. G., Cyr, G., Ling, J. L., Winnick, M., Tregloan-Reed, J., and Freund, M. M. (2009). Air ionization at rock surfaces and pre-earthquake signals. J. Atmos. Sol. Terr. Phys., 71(17–18), 1824–1834. https://doi.org/10.1016/j.jastp.2009.07.013

Freund, F. T., and Freund, M. M. (2015). Paradox of peroxy defects and positive holes in rocks. Part Ⅰ: Effect of temperature. J. Asian Earth Sci., 114, 373–383. https://doi.org/10.1016/j.jseaes.2015.04.047

Hayakawa, M., Molchanov, O. A., and NASDA/UEC team. (2004). Summary report of NASDA's earthquake remote sensing frontier project. Phys. Chem. Earth, 29(4–9), 617–625. https://doi.org/10.1016/j.pce.2003.08.062

Hayakawa, M. (2015). Earthquake Prediction with Radio Techniques (pp. 294). Singapore: John Wiley & Sons.222

He, Y., Yang, D., Qian, J., and Parrot, M. (2011). Response of the ionospheric electron density to different types of seismic events. Nat. Hazards Earth Syst. Sci., 11(8), 2173–2180. https://doi.org/10.5194/nhess-11-2173-2011

Huang, J. P., Liu, J., Ouyang, X. Y., and Li, W. J. (2010). Analysis to the energetic particles around the M8.8 Chili earthquake. Seismol. Geol., 32(3), 417–423. https://doi.org/10.3969/j.issn.0253-4967.2010.03.008

Huang, J. P., Lei, J. G., Li, S. X., Zeren, Z. M., Li, C., Zhu, X. H., and Yu, W. H. (2018). The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results. Earth Planet. Phys., 2(6), 469–478. https://doi.org/10.26464/epp2018045

Kelley, M. C., Swartz, W. E., and Heki, K. (2017). Apparent ionospheric total electron content variations prior to major earthquakes due to electric fields created by tectonic stresses. J. Geophys. Res., 122(6), 6689–6695. https://doi.org/10.1002/2016JA023601

Kuo, C. L., Huba, J. D., Joyce, G., and Lee, L. C. (2011). Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res., 116(A10), A10317. https://doi.org/10.1029/2011JA016628

Larkina, V. I., Nalivayko, A. V., Gershenzon, N. I., Gokhberg, M. B., Liperovskiy, V. A., and Shalimov, S. L. (1983). Observations of VLF emission, related with seismic activity, on the Interkosmos-19 satellite. Geomagn. Aeron.(Engl. Transl.) , 23(5), 684–687

Li, M., and Parrot, M. (2012). "Real time analysis" of the ion density measured by the satellite DEMETER in relation with the seismic activity. Nat. Hazards Earth Syst. Sci., 12(9), 2957–2963. https://doi.org/10.5194/nhess-12-2957-2012

Li, M., and Parrot, M. (2013). Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J. Geophys. Res., 118(6), 3731–3739. https://doi.org/10.1002/jgra.50313

Liu, J. (2013). Ionopheric perturbance study before earthquakes (in Chinese). Beijing: Chinese Academy of Sciences.222

Lin, J., Shen, X. H., Hu, L. C., Wang, L. W., and Zhu, F. Y. (2018). CSES GNSS ionospheric inversion technique, validation and error analysis. Sci. China Technol. Sci., 61(5), 669–677. https://doi.org/10.1007/s11431-018-9245-6

Liu, C., Guan, Y. B., Zheng, X. Z., Zhang, A. B., Piero, D., and Sun, Y. Q. (2018). The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci.. https://doi.org/10.1007/s11431-018-9345-8

Liu, J., Huang, J. P., and Zhang, X. M. (2014). Ionospheric perturbations in plasma parameters before global strong earthquakes. Adv. Space Res., 53(5), 776–787. https://doi.org/10.1016/j.asr.2013.12.029

Liu, J. Y., Chuo, Y. J., Pulinets, S. A., Tsai, H. F., and Zeng, X. P. (2002). A study on the TEC perturbations prior to the Rei-Li, Chi-Chi and Chia-Yi earthquakes. In Hayakawa, M., and Molchanov, O. A. (Eds.), Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling (pp. 297–301). Tokyo: TERRRAPUB.222

Liu, J. Y., Chuo, Y. J., Shan, S. J., Tsai, Y. B., Pulinets, S. A., and Yu S. B. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys., 22(5), 1585–1593. https://doi.org/10.5194/angeo-22-1585-2004

Liu, J. Y., Chen, Y. I., Chen, C. H., Liu, C. Y., Chen, C. Y., Nishihashi, M., Li, J. Z., Xia, Y. Q., Oyama, K. I., … Lin, C. H. (2009). Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake. J. Geophys. Res., 114(A4), A04320. https://doi.org/10.1029/2008JA013698

Lognonné, P., Artru, J., Garcia, R., Crespon, F., Ducic, V., Jeansou, E., Occhipinti, G., Helbert, J., Moreaux, G., and God P. E. (2006). Ground-based GPS imaging of ionospheric post-seismic signal. Planet. Space Sci., 54(5), 528–540. https://doi.org/10.1016/j.pss.2005.10.021

Molchanov, O. A., Mazhaeva, O. A., Golyavin, A. N., and Hayakawa, M. (1993). Observation by the Intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquakes. Ann. Geophys., 11(5), 431–440

Němec, F., Santolík, O., Parrot, M., and Berthelier, J. J. (2008). Spacecraft observations of electromagnetic perturbations connected with seismic activity. Geophys. Res. Lett., 35(5), L05109. https://doi.org/10.1029/2007GL032517

Němec, F., Santolík, O., and Parrot, M. (2009). Decrease of intensity of ELF/VLF waves observed in the upper ionosphere close to earthquakes: a statistical study. J. Geophys. Res., 114(A4), A04303. https://doi.org/10.1029/2008JA013972

Ouyang, X. Y., Zhang, X. M., Shen, X. H., Huang, J. P., Liu, J., Zeren, Z. M., and Zhao, S. F. (2011). Disturbance of O+ density before major earthquake detected by DEMETER satellite. Chinese J. Space Sci., 31(5), 607–617

Parrot, M., and Mogilevsky, M. M. (1989). VLF emissions associated with earthquakes and observed in the ionosphere and the magnetosphere. Phys. Earth Planet. Interi., 57(1–2), 86–99. https://doi.org/10.1016/0031-9201(89)90218-5

Parrot, M., Něme, F., Santolík, O., and Berthelier, J. J. (2005). ELF magnetospheric lines observed by DEMETER. Ann. Geophys., 23(10), 3301–3311. https://doi.org/10.5194/angeo-23-3301-2005

Parrot, M. (2006). Special issue of planetary and space science 'DEMETER'. Planet. Space Sci., 54(5), 411–412. https://doi.org/10.1016/j.pss.2005.10.012

Parrot, M. (2011). Statistical analysis of the ion density measured by the satellite DEMETER in relation with the seismic activity. Earthq. Sci., 24(6), 513–521. https://doi.org/10.1007/s11589-011-0813-3

Parrot, M. (2012). Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity. Ann. Geophys., 55(1), 149–155. https://doi.org/10.4401/ag-5270

Píša, D., Němec, F., Parrot, M., and Santolík, O. (2012). Attenuation of electromagnetic waves at the frequency ~1.7 kHz in the upper ionosphere observed by the DEMETER satellite in the vicinity of earthquakes. Ann. Geophys., 55(1), 157–163. https://doi.org/10.4401/ag-5276

Píša, D., Němec, F., Santolík, O., Parrot, M., and Rycroft, M. (2013). Additional attenuation of natural VLF electromagnetic waves observed by the DEMETER spacecraft resulting from preseismic activity. J. Geophys. Res., 118(8), 5286–5295. https://doi.org/10.1002/jgra.50469

Pulinets, S. A. (2009). Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model. In Hayakawa, M. (Ed.), Electromagnetic Phenomena Associated with Earthquakes (pp. 235–253). Kerala, India: Transworld Research Network.222

Pulinets, S. A., Ouzounov, D. P., Karelin, A. V., and Davidenko, D. V. (2015). Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron., 55(4), 521–538. https://doi.org/10.1134/S0016793215040131

Sarkar, S., Gwal, A. K., and Parrot, M. (2007). Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes. J. Atmos. Sol. Terr. Phys., 69(13), 1524–1540. https://doi.org/10.1016/j.jastp.2007.06.006

Shen, X. H., Zhang, X. M., Yuan, S. G., Wang, L. W., Cao, J. B., Huang, J. P., Zhu, X. H., Piergiorgio, P., and Dai, J. P. (2018). The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci., 61(5), 634–642. https://doi.org/10.1007/s11431-018-9242-0

Sorokin, V. M., Chmyrev, V. M., and Hayakawa, M. (2015). Electrodynamic Coupling of Lithosphere-Atmosphere-Ionosphere of the Earth (pp. 326). Nova Science Pub. Inc.222

Yan, R., Parrot, M., and Pinçon, J. L. (2017). Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. J. Geophys. Res., 122(12), 12421–12429. https://doi.org/10.1002/2017JA024623

Yan, R., Guan, Y. B., Shen, X. H., Huang, J. P., Zhang, X. M., Liu, C., and Liu, D. P. (2018). The Langmuir Probe onboard CSES: data inversion analysis method and first results. Earth Planet. Phys., 2(6), 479–488. https://doi.org/10.26464/epp2018046

Zeng, Z. C., Zhang, B., Fang, G. Y., Wang, D. F., and Yin, H. J. (2009). The analysis of ionospheric variations before Wenchuan earthquake with DEMETER data. Chinese J. Geophys.(in Chinese) , 52(1), 11–19

Zeren, Z. M., Shen, X. H., Cao, J. B., Zhang X. M., Huang, J. P., Liu, J., Ouyang, X. Y., and Zhao, S. F. (2012). Statistical analysis of EIF/VI magnetic field disturbances before major earthquakes. Chinese J. Geophys.(in Chinese) , 55(11), 3699–3708. https://doi.org/10.6038/j.issn.0001-5733.2012.11.017

Zhang, X., Fidani, C., Huang, J., Shen, X., Zeren, Z., and Qian, J. (2013). Burst increases of precipitating electrons recorded by the DEMETER satellite before strong earthquakes. Nat. Hazards Earth Syst. Sci., 13(1), 197–209. https://doi.org/10.5194/nhess-13-197-2013

Zhang, X. M., Qian, J. D., Ouyang, X. Y., Shen, X. H., Cai, J. A., and Zhao, S. F. (2009a). Ionospheric electromagnetic perturbations observed on DEMETER satellite before Chile M7.9 earthquake. Earthq. Sci., 22(3), 251–255. https://doi.org/10.1007/s11589-009-0251-7

Zhang, X. M., Qian, J. D., Ouyang, X. Y., Cai, J. A., Liu, J., Shen, X. H., and Zhao, S. F. (2009b). Ionospheric electro-magnetic disturbances prior to Yutian 7.2 earthquake in Xinjiang. Chinese J. Space Sci., 29(2), 213–221

Zhang, X. M., Qian, J. D., Ouyang, X. Y., Shen, X. H., Cai, J. A., and Zhao, S. F. (2009c). Ionospheric electromagnetic disturbances observed on DEMETER satellite before an earthquake ofM7.9 in Chili. Progress in Geophys., 24(4), 1196–1203. https://doi.org/10.3969/j.issn.1004-2903.2009.04.006

Zhu, T., and Wang, L. W. (2011). LF electric field anomalies related to Wenchuan earthquake observed by DEMETER satellite. Chinese J. Geophys.(in Chinese) , 54(3), 717–727. https://doi.org/10.3969/j.issn.0001-5733.2011.03.011

[1]

XueMin Zhang, Vladimir Frolov, ShuFan Zhao, Chen Zhou, YaLu Wang, Alexander Ryabov, DuLin Zhai, 2018: The first joint experimental results between SURA and CSES, Earth and Planetary Physics, 2, 527-537. doi: 10.26464/epp2018051

[2]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[3]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044

[4]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[5]

YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015

[6]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[7]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[8]

XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009

[9]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[10]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[11]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[12]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[13]

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

[14]

WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008

[15]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[16]

WeiMin Wang, JinLai Hao, ZhenXing Yao, 2018: Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras, Earth and Planetary Physics, 2, 86-87. doi: 10.26464/epp2018010

[17]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Examples of unusual ionospheric observations by the CSES prior to earthquakes

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu