<

Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015

2018, 2(2): 150-162. doi: 10.26464/epp2018015

SOLID EARTH: SEISMOLOGY

A test on methods for MC estimation based on earthquake catalog

1. 

Department of Geophysics, Peking University, Beijing 100871, China

2. 

Institute of Statistical Mathematics, 10-3 Midoori-Cho, Tachikawa, Tokyo, 190-8569, Japan

Corresponding author: ShiYong Zhou, zsy@pku.edu.cn

Received Date: 2018-01-11
Web Publishing Date: 2018-03-01

This study tested five methods widely used in estimating the complete magnitudes (MC) of earthquake catalogs. Using catalogs of observed earthquake properties, we test the performance of these five algorithms under several challenging conditions, such as small volume of events and spatial-temporal heterogeneity, in order to see whether the algorithms are stable and in agreement with known data. We find that the maximum curvature method (MAXC) has perfect stability, but will significantly underestimate MC unless heterogeneity is absent. MC estimated by the b-value stability method (MBS) requires many events to reach a stable result. Results from the goodness of fit method (GFT) were unstable when heterogeneity lowered the fitness level. The entire magnitude range method (EMR) is relatively stable in most conditions, and can reflect the change in MC when heterogeneity exists, but when the incomplete part of the earthquake catalog is dismissed, this method fails. The median-based analysis of the segment slope method (MBASS) can tolerate small sample size, but is incapable of reflecting the missing degree of small events in aftershock sequences. In conditions where MC changes rapidly, such as in aftershock sequences, observing the time sequence directly can give a precise estimation of the complete sub-catalog, but only when the number of events available for study is large enough can the MAXC, GFT, and MBS methods give a similarly reliable estimation.

Key words: complete magnitude of an earthquake catalog, G-R law, b-value, FMD

Aki, K. (1965). Maximum likelihood estimate of b in the formula logN=a-bM and its confidence limits. Bull. Earthq. Res. Inst., 43, 237–239.

Amorese, D. (2007). Applying a change-point detection method on frequency-magnitude distributions. Bull. Seismol. Soc. Am., 97(5), 1742–1749. http://dx.doi.org/10.1785/0120060181 doi: 10.1785/0120060181.

Cao, A. M., and Gao, S. S. (2002). Temporal variation of seismic b‐values beneath northeastern Japan island arc. Geophy. Res. Lett., 29(9), 1334. http://dx.doi.org/10.1029/2001GL013775 doi: 10.1029/2001GL013775.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist., 7(1), 1–26. http://dx.doi.org/10.1214/aos/1176344552 doi: 10.1214/aos/1176344552.

Gomberg, J. (1991). Seismicity and detection/location threshold in the Southern Great Basin Seismic Network. J. Geophys. Res., 96(B10), 16401–16414. http://dx.doi.org/10.1029/91JB01593 doi: 10.1029/91JB01593.

Gutenberg, B., and Richter, C. F. (1944). Frequency of earthquakes in California. Bull. Seismol. Soc. Am., 34(4), 185–188.

Huang, Y. L., Zhou, S. Y., and Zhuang, J. C. (2016). Numerical tests on catalog-based methods to estimate magnitude of completeness. Chin. J. Geophys., 59(3): 266–275. http://dx.doi.org/10.1002/cjg2.20232 doi: 10.1002/cjg2.20232.

Iwata, T. (2013). Estimation of completeness magnitude considering daily variation in earthquake detection capability. Geophys. J. Int., 194(3), 1909–1919. http://dx.doi.org/10.1093/gji/ggt208 doi: 10.1093/gji/ggt208.

Mann, H. B., and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 18(1), 50–60. http://dx.doi.org/10.1214/aoms/1177730491 doi: 10.1214/aoms/1177730491.

Mignan, A., Werner, M. J., Wiemer, S., Chen, C. C., and Wu, Y. M. (2011). Bayesian estimation of the spatially varying completeness magnitude of earthquake catalogs. Bull. Seismol. Soc. Am., 101(3), 1371–1385. http://dx.doi.org/10.1785/0120100223 doi: 10.1785/0120100223.

Mignan, A., and Woessner, J. (2012). Estimating the magnitude of completeness for earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis. http://dx.doi.org/10.5078/corssa-00180805

Ogata, Y., and Katsura, K. (1993). Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues. Geophys. J. Int., 113(3), 727–738. http://dx.doi.org/10.1111/j.1365-246X.1993.tb04663.x doi: 10.1111/j.1365-246X.1993.tb04663.x.

Ogata, Y. (2006). Statistical analysis of seismicity - updated version (SASeis2006). In Computer Science Monograph (pp. 1-28). Tokyo, Japan: The Institute of Statistical Mathematics.

Schorlemmer, D., Wiemer, S., and Wyss, M. (2005). Variations in earthquake-size distribution across different stress regimes. Nature, 437(7058), 539–542. http://dx.doi.org/10.1038/nature04094 doi: 10.1038/nature04094.

Schorlemmer, D., and Woessner, J. (2008). Probability of detecting an earthquake. Bull. Seismol. Soc. Am., 98(5), 2103–2117. http://dx.doi.org/10.1785/0120070105 doi: 10.1785/0120070105.

Shi, Y. L., and Bolt, B. A. (1982). The standard error of the magnitude-frequency b value. Bull. Seismol. Soc. Am., 72(5), 1677–1687.

Utsu, T. (1957). Magnitudes of earthquakes and occurrence of their aftershocks. Zisin, 10, 35–45. http://dx.doi.org/10.4294/zisin1948.10.1_35 doi: 10.4294/zisin1948.10.1_35.

Wiemer, S., and Wyss, M. (2000). Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States, and Japan. Bull. Seismol. Soc. Am., 90(4), 859–869. http://dx.doi.org/10.1785/0119990114 doi: 10.1785/0119990114.

Wiemer, S. (2001). A software package to analyze seismicity: ZMAP. Seismol. Res. Lett., 72(3), 373–382. http://dx.doi.org/10.1785/gssrl.72.3.373 doi: 10.1785/gssrl.72.3.373.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In S. Kotz, N. L. Johnson (Eds.), Breakthroughs in Statistics (pp. 196–202). New York, NY: Springer.

Woessner, J., and Wiemer, S. (2005). Assessing the quality of earthquake catalogues: estimating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am, 95(2), 684–698. http://dx.doi.org/10.1785/0120040007 doi: 10.1785/0120040007.

Zhuang, J. C., Harte, D., Werner, M. J., Hainzl, S., and Zhou, S. Y. (2012). Basic models of seismicity: temporal models, Community Online Resource for Statistical Seismicity Analysis. http://dx.doi.org/10.5078/corssa-79905851

Zhuang, J. C., and Touati, S. (2015). Stochastic simulation of earthquake catalogs, Community Online Resource for Statistical Seismicity Analysis. http://dx.doi.org/10.5078/corssa-43806322

[1]

XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009

[2]

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

[3]

WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008

[4]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[5]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[6]

WeiMin Wang, JinLai Hao, ZhenXing Yao, 2018: Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras, Earth and Planetary Physics, 2, 86-87. doi: 10.26464/epp2018010

[7]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
Catalog

Figures And Tables

A test on methods for MC estimation based on earthquake catalog

YiJian Zhou, ShiYong Zhou, JianCang Zhuang