<

Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

2018, 2(4): 276-291. doi: 10.26464/epp2018026

ATMOSPHERIC PHYSICS

The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview

1. 

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

2. 

University of Chinese Academy of Sciences, Beijing 100049, China

3. 

Climate Change Research Center, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: TianJun Zhou, zhoutj@lasg.iap.ac.cn

Received Date: 2018-06-28
Web Publishing Date: 2018-07-01

Climate system models are useful tools for understanding the interactions among the components of the climate system and predicting/projecting future climate change. The development of climate models has been a central focus of the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP) since the establishment of the laboratory in 1985. In China, many pioneering component models and fully coupled models of the climate system have been developed by LASG/IAP. The fully coupled climate system developed in the recent decade is named FGOALS (Flexible Global Ocean-Atmosphere-Land System Model). In this paper, an application-oriented review of the LASG/IAP FGOALS model is presented. The improved model performances are demonstrated in the context of cloud-radiation processes, Asian monsoon, ENSO phenomena, Atlantic Meridional Overturning Circulation (AMOC) and sea ice. The FGOALS model has contributed to both CMIP5 (Coupled Model Intercomparison Project-phase 5) and IPCC (Intergovernmental Panel on Climate Change) AR5 (the Fifth Assessment Report). The release of FGOALS data has supported the publication of nearly 500 papers around the world. The results of FGOALS are cited ~106 times in the IPCC WG1 (Working Group 1) AR5. In addition to the traditional long-term simulations and projections, near-term decadal climate prediction is a new set of CMIP experiment, progress of LAGS/IAP in the development of near-term decadal prediction system is reviewed. The FGOALS model has supported many Chinese national-level research projects and contributed to the national climate change assessment report. The crucial role of FGOALS as a modeling tool for supporting climate sciences is highlighted by demonstrating the model’s performances in the simulation of the evolution of Earth’s climate from the past to the future.

Key words: Climate system model, FGOALS, Climate variability, climate change

Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L., and Tomas, R. A. (2007). Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proc. Natl. Acad. Sci. USA, 104(10), 3713–3718. https://doi.org/10.1073/pnas.0605064103

Bao, Q., Lin, P. F., Zhou, T. J., Liu, Y. M., Yu, Y. Q., Wu, G. X., He, B., He, J., Li, L. J., … Zhou, L. J. (2013). The flexible global ocean–atmosphere–land system model, spectral version 2: FGOALS-s2. Adv. Atm. Sci., 30(3), 561–576.https://doi.org/10.1007/s00376-012-2113-9

Bellenger, H., Guilyardi, E., Leloup, J., Lengaigne, M., and Vialard, J. (2014). ENSO representation in climate models: from CMIP3 to CMIP5. Climate Dyn., 42(7-8), 1999–2018. https://doi.org/10.1007/s00382-013-1783-z

Bloom, S. C., Takacs, L. L., Da Silva, A. M., and Ledvina, D. (1996). Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124(6), 1256–1271. https://doi.org/10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2

Chang, C.-P., Zhang, Y. S., and Li, T. (2000). Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13(24), 4310–4325. https://doi.org/10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2

Chen, L., Yu, Y. Q., and Sun, D. Z. (2013). Cloud and water vapor feedbacks to the El Niño warming: are they still biased in CMIP5 models?. J. Climate, 26(14), 4947–4961. https://doi.org/10.1175/JCLI-D-12-00575.1

Chen, L., Yu, Y. Q., and Zheng, W. P. (2016). Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2. Climate Dyn., 47(7-8), 2617–2634. http://doi.org/10.1007/s00382-016-2988-8

Chen, X. L., Zhou, T. J., and Guo, Z. (2014). Climate sensitivities of two versions of FGOALS model to idealized radiative forcing. Sci. China Earth Sci., 57(6), 1363–1373. https://doi.org/10.1007/s11430-013-4692-4

Chen, X. L., and Zhou, T. J. (2015). Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett., 42(21), 9433–9439. https://doi.org/10.1002/2015GL066384

Chen, X. L., and Zhou, T. J. (2016). Uncertainty in crossing time of 2°C warming threshold over China. Sci. Bull., 61(18), 1451–1459. https://doi.org/10.1007/s11434-016-1166-z

Christensen, J. H., Krishna Kumar, K., Aldrian, E., An, S.-I., Cavalcanti, I. F. A., Castro, de M., Dong, W., Goswami, P., Hall, A., ... and Zhou T. J. (2013). Climate Phenomena and their Relevance for Future Regional Climate Change Supplementary Material. In T. F. et al. (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.

Crowley, T., Baum, S. K., Kim, K. Y., Hegerl, G. C., and Hyde, W. T. (2003). Modeling ocean heat content changes during the last millennium. Geophys. Res. Lett., 30(18), 1932. https://doi.org/10.1029/2003GL017801

Doblas-Reyes, F., Andreu-Burillo, I., Chikamoto, Y., García-Serrano, J., Guemas, V., Kimoto, M., Mochizuki, T., Rodrigues, L. R., and van Oldenborgh, G. J. (2013). Initialized near-term regional climate change prediction. Nat. Commun., 4, 1715. https://doi.org/10.1038/ncomms2704

Dolinar, E. K., Dong, X. Q., Xi, B. K., Jiang, J. H., and Su, H. (2015). Evaluation of CMIP5 simulated clouds and TOA radiation budgets using NASA satellite observations. Climate Dyn., 44(7-8), 2229–2247. https://doi.org/10.1007/s00382-014-2158-9

Duan, A. M., Sun, R. Z., and He, J. H. (2017). Impact of surface sensible heating over the Tibetan Plateau on the western Pacific subtropical high: A land–air–sea interaction perspective. Adv. Atmos. Sci., 34(2), 157–168. https://doi.org/10.1007/s00376-016-6008-z

Feng, B. X., Liu, H. L., Lin, P. F., and Wang, Q. (2017). Meso-scale eddy in the South China Sea simulated by an eddy-resolving ocean model. Acta Oceanol. Sin., 36(5), 9–25. https://doi.org/10.1007/s13131-017-1058-3

Guo, Y.F., Yu, Y.Q., Liu, X.Y., and Zhang, X. H. (2001). Simulation of climate change induced by CO2 increasing for East Asia with IAP/LASG GOALS model. Advances in Atmospheric Sciences, 18(1), 53–66. https://doi.org/10.1007/s00376-001-0004-6

Guo, Z., and Zhou, T. J. (2013). Why does FGOALS-gl reproduce a weak Medieval Warm Period but a reasonable Little Ice Age and 20th century warming?. Adv. Atmos. Sci., 30(6), 1758–1770. https://doi.org/10.1007/s00376-013-2227-8

Guo, Z., and Zhou, T. J. (2014). An improved diagnostic stratocumulus scheme based on estimated inversion strength and its performance in GAMIL2. Sci. China: Earth Sci., 57(11), 2637–2649. https://doi.org/10.1007/s11430-014-4891-7

Guo, Z., Zhou, T. J., and Wu, B. (2017). The asymmetric effects of El Niño and La Niña on the East Asian winter monsoon and their simulation by CMIP5 atmospheric models. J. Meteor Res., 31(1), 82–93. https://doi.org/10.1007/s13351-017-6095-5

He, B. (2016). Unrealistic treatment of detrained water substance in FGOALS-s2 and its influence on the model’s climate sensitivity. Atmos. Oceanic Sci. Lett., 9(1), 45–51. https://doi.org/10.1080/16742834.2015.1124601

He, C., and Zhou, T. J. (2015). Responses of the Western North Pacific subtropical high to global warming under RCP4.5 and RCP8.5 scenarios projected by 33 CMIP5 models: the dominance of tropical Indian Ocean-Tropical Western Pacific SST gradient. J. Climate, 28(1), 365–380. https://doi.org/10.1175/JCLI-D-13-00494.1

He, C., Zhou, T. J., Lin, A. L., Wu, B., Gu, D. J., Li, C. H., and Zheng, B. (2015). Enhanced or Weakened Western North Pacific Subtropical High under Global Warming?. Sci. Rep., 5, 16771. https://doi.org/10.1038/srep16771

He, C., Wu, B., Zou, L. W., and Zhou, T. J. (2017). Responses of the summertime subtropical anticyclones to global warming. J. Climate, 30(6), 6465–6479. https://doi.org/10.1175/JCLI-D-16-0529.1

Hong, J. L., and Liu, Y. M. (2012). Contrasts of atmospheric circulation and associated tropical convection between Huaihe River valley and Yangtze River valley Mei-yu Flooding. Adv. Atmos. Sci., 29(4), 755–768. https://doi.org/10.1007/s00376-012-1217-6

Huang, Z. D., Liu, H. L., Lin, P. F., and Hu, J. Y. (2017). Influence of island chains on the Kuroshio intrusion in the Luzon Strait. Adv. Atmos. Sci., 34(3), 397–410. https://doi.org/10.1007/s00376-016-6159-y

Jansen, E., Overpeck, J., Briffa, K. R., Duplessy, J.-C., Joos, F., Masson-Delmotte, V., Olago, D., Otto-Bliesner, B., Peltier, W .R., ... Zhang, D. (2007). Palaeoclimate. In S. D. Qin, et al. (Eds.). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Jiang, D. B, Yu, G., Zhao, P., Chen, X., Liu, J., Liu, X. D., Wang, S. W., Zhang, Z. S., Yu, Y. Q., ... Yan, X. D. (2015). Paleoclimate modeling in China: A review. Adv. Atmos. Sci., 32(2), 250–275, doi: 10.1007/s00376-014-0002-0

Kay, J. E., Hillman, B. R., Klein, S. A., Zhang, Y., Medeiros, B., Pincus, R., Gettelman, A., Eaton, B., Boyle, J., … Ackerman, T. P. (2012). Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Climate, 25(15), 5190–5207. https://doi.org/10.1175/JCLI-D-11-00469.1

Kirtman, B., Power, S. B., Adedoyin, J. A., Boer, G. J., Bojariu, R., Camilloni, I., Doblas-Reyes, F. J., Fiore, A. M., Kimoto, M., … Wang, H. J. (2013). Near-term climate change: projections and predictability. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate. Cambridge, UK: Cambridge University Press.

Kitoh, A., Endo, H., Krishna Kumar, K., Cavalcanti, I. F. A., Goswami, P., and Zhou, T. J. (2013). Monsoons in a changing world: a regional perspective in a global context. J. Geophys. Res. Atmos., 118, doi:10.1002/jgrd.50258

Li, D. H., Zhou, T. J., Zou, L. W., Zhang, W. X., and Zhang, L. X. (2018). Extreme high-temperature events over East Asia in 1.5°C and 2°C warmer futures: Analysis of NCAR CESM low-warming experiments. Geophys. Res. Lett., 45(3), 1541–1550. https://doi.org/10.1002/2017GL076753

Li, L. J., Wang, B., Dong, L., Liu, L., Shen, S., Hu, N., Sun, W. Q., Wang, Y., Huang, W. Y., … Yang, G. W. (2013a). Evaluation of Grid-point Atmospheric Model of IAP LASG Version 2 (GAMIL2). Adv. Atmos. Sci., 30(3), 855–867. https://doi.org/10.1007/s00376-013-2157-5

Li, L. J., Lin, P. F., Yu, Y. Q., Wang, B., Zhou, T. J., Liu, L., Liu, J. P., Bao, Q., Xu, S. M., … Qiao, F. L. (2013b). The flexible global Ocean–atmosphere–land system model, Grid-point version 2: FGOALS-g2. Adv. Atmos. Sci., 30(3), 543–560. https://doi.org/10.1007/s00376-012-2140-6

Li, L. J., Wang, B., Dong, L., Liu, L., Pu, Y., Shen, S., Huang, W. Y., Sun, W. Q., Wang, Y., and Shi, X. J. (2014a). The grid-point atmospheric model of IAP LASG–version 2: GAMIL2. In T. J. Zhou, et al. (Eds.), Flexible Global Ocean–Atmosphere–Land System Model. Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-642-41801-3_2

Li, L. J., Wang, B., Zhang, G. J. (2014b). The role of nonconvective condensation processes in response of surface shortwave cloud radiative forcing to El Niño warming. J. Climate, 27(17), 6721–6736. https://doi.org/10.1175/JCLI-D-13-00632.1

Li, L. J., Wang, B., and Zhang, G. J. (2015). The role of moist processes in shortwave radiative feedback during ENSO in the CMIP5 models. J. Climate, 28(24), 9892–9908. https://doi.org/10.1175/JCLI-D-15-0276.1

Li, T., Wang, B., Wu, B., Zhou, T. J., Chang, C. P., and Zhang, R. H. (2017). Theories on Formation of an Anomalous Anticyclone in Western North Pacific during El Niño: A Review. J. Meteor. Res., 31(6), 987–1006. https://doi.org/10.1007/s13351-017-7147-6

Lin, P. F., Liu, H. L., Yu, Y. Q., and Zhou, T. J. (2013a). Long-term Behaviors of Two Versions of FGOALS2 in preindustrial control simulations with implications for 20th century simulations. Adv. Atmos. Sci., 30(3), 577–592. https://doi.org/10.1007/s00376-013-2186-0

Lin, P. F., Yu, Y. Q., and Liu, H. L. (2013b). Oceanic climatology in the coupled model FGOALS-g2: Improvements and Biases. Adv. Atmos. Sci., 30(3), 819–840. https://doi.org/10.1007/s00376-012-2137-1

Lin, P. F., Yu, Y. Q., and Liu, H. L. (2013c). Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci., 30(1), 175–192. https://doi.org/10.1007/s00376-012-2042-7

Liu, H. L., Yu, Y. Q., Lin, P. F., and Wang, F. C. (2014). High-resolution LICOM. In: T. J. Zhou, et al., (Eds.), Flexible Global Ocean–Atmosphere–Land System Model. Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-642-41801-3_38

Liu, Y. M., Hu, J., He, B., Bao, Q., Duan, A. M., and Wu, G. X. (2013). Seasonal evolution of subtropical anticyclones in the climate system model FGOALS-s2. Adv. Atmos. Sci., 30(3), 593–606. https://doi.org/10.1007/s00376-012-2154-0

Lu, J. H., Wang, F. C., Liu, H. L., and Lin, P. F. (2016). Stationary mesoscale eddies, upgradient eddy fluxes, and the anisotropy of eddy diffusivity. Geophys. Res. Lett., 43(2), 743–751. https://doi.org/10.1002/2015GL067384

Lumpkin, R., and Speer, K. (2007). Global ocean meridional overturning. J. Phys. Oceanogr., 37(10), 2550–2562. https://doi.org/10.1175/JPO3130.1

Man, W. M., and Zhou, T. J. (2011). Forced response of atmospheric oscillations during the last millennium simulated by a climate system model. Chin. Sci. Bull., 56(28-29), 3042–3052. https://doi.org/10.1007/s11434-011-4637-2

Man, W. M., Zhou, T. J., and Jungclaus, J. H. (2012). Simulation of the East Asian summer monsoon during the last millennium with the MPI Earth System Model. J. Climate, 25(22), 7852–7866. https://doi.org/10.1175/JCLI-D-11-00462.1

Man, W. M., and Zhou, T. J. (2014a). Regional-scale surface air temperature and East Asian summer monsoon changes during the last millennium simulated by the FGOALS-gl climate system model. Adv. Atmos. Sci., 31(4), 765–778. https://doi.org/10.1007/s00376-013-3123-y

Man, W. M., and Zhou, T. J. (2014b). Response of the East Asian summer monsoon to large volcanic eruptions during the last millennium. Chin. Sci. Bull., 59(31), 4123–4129. https://doi.org/10.1007/s11434-014-0404-5

Meehl, G. A., Goddard, L., Murphy, J., Stouffer, R. J., Boer, G., Danabasoglu, G., Dixon, K., Giorgetta, M. A., Greene, A. M., … Stockdale, T. (2009). Decadal prediction: Can it be skillful?. Bull. Amer. Meteor. Soc., 90(10), 1467–1485. https://doi.org/10.1175/2009BAMS2778.1

Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., … Yeager, S. (2014). Decadal climate prediction: an update from the trenches. Bull. Amer. Meteor. Soc., 95(2), 243–267. https://doi.org/10.1175/BAMS-D-12-00241.1

Nangombe, S., Zhou, T. J., Zhang, W. X., Wu, B., Hu, S., Zou, L. W., and Li, D. H. (2018). Record-breaking climate extremes in Africa under stabilized 1.5°C and 2°C global warming scenarios. Nat. Climate Change, 8(5), 375–380. https://doi.org/10.1038/s41558-018-0145-6

Pincus, R., Batstone, C. P., Hofmann, R. J. P., et al. (2008) Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J. Geo. Res. Atmos., 2008, 113(D14):-.

Song, F. F., and Zhou, T. J. (2014a). Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: skill dependence on Indian Ocean-Western Pacific anticyclone teleconnection. J. Climate, 27(4), 1679–1697. https://doi.org/10.1175/JCLI-D-13-00248.1

Song, F. F., and Zhou, T. J. (2014b). The climatology and interannual variability of East Asian summer monsoon in CMIP5 coupled models: Does air-sea coupling improve the simulations?. J. Climate, 27(23), 8761–8777. https://doi.org/10.1175/JCLI-D-14-00396.1

Sperber, K. R., Annamalai, H., Kang, I.-S., Kitoh, A., Moise, A., Turner, A., Wang, B., and Zhou T. J. (2013). The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn, 41, 2711–2744. DOI10.1007/s00382-012-1607-6

Stevens, B., and Bony, S. (2013). What are climate models missing?. Science, 340(6136), 1053–1054. https://doi.org/10.1126/science.1237554

Taylor, K. E., Stouffer, R. J., and Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

Wang, B., Wu, R. G., and Fu, X. H. (2000). Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?. J. Climate, 13(9), 1517–1536. https://doi.org/10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2

Wang, B., Liu, M. M., Yu, Y. Q., Li, L. J., Lin, P. F., Dong, L., Liu, L., Liu, J. P., Huang, W. Y., … Wang, Y. (2013). Preliminary evaluations of FGOALS-g2 for decadal predictions. Adv. Atmos. Sci., 30(3), 674–683. https://doi.org/10.1007/s00376-012-2084-x

Wang, C. Y., Zhou, T. J., Lin, Z., and Jin, N. (2015). Future earth activities in China: towards a national sustainable development. Adv. Climate Change Res., 6(2), 84–91. https://doi.org/10.1016/j.accre.2015.09.008

Wang S. P., Zhao, J., Liu, H., Wu, L. 2018, Spatial and seasonal variations of submesoscale eddies in the east tropical Pacific Ocean, Journal of Physical Oceanography, 48, 101–116, https://doi.org/10.1175/JPO-D-17-0070.1

Wood, R., Bretherton, C. S. (2006). On the relationship between stratiform low cloud cover and lower-tropospheric stability. J. Climate, 19(24), 6425–6432.

Wu, B., Zhou, T. J., and Li, T. (2009). Seasonally evolving dominant interannual variability modes of East Asian Climate. J. Climate, 22(11), 2992–3005. https://doi.org/10.1175/2008JCLI2710.1

Wu, B, Li, T., and Zhou, T. J. (2010). Asymmetry of atmospheric circulation anomalies over the Western North Pacific between El Niño and La Niña. J. Climate, 23(18), 4807–4822. https://doi.org/10.1175/2010JCLI3222.1

Wu, B., and Zhou, T. J. (2012). Prediction of decadal variability of sea surface temperature by a coupled global climate model FGOALS_gl developed in LASG/IAP. Chin. Sci. Bull., 57(19), 2453–2459. https://doi.org/10.1007/s11434-012-5134-y

Wu, B., Chen, X. L., Song, F. F., Sun, Y., and Zhou, T. J. (2015). Initialized decadal predictions by LASG/IAP climate system model FGOALS-s2: evaluations of strengths and weaknesses. Adv. Meteor., 2015, Article ID 904826. https://doi.org/10.1155/2015/904826

Wu, B., and Zhou, T. J. (2016). Relationships between ENSO and the East Asian-western North Pacific monsoon: observations versus 18 CMIP5 models. Climate Dyn., 46(3-4), 729–743. https://doi.org/10.1007/s00382-015-2609-y

Wu, B., Zhou, T. J., and Li, T. (2017a). Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Climate, 30(23), 9621–9635. https://doi.org/10.1175/JCLI-D-16-0489.1

Wu, B., Zhou, T. J., and Li, T. (2017b). Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part II: Formation processes. J. Climate, 30(23), 9637–9650. https://doi.org/10.1175/JCLI-D-16-0495.1

Wu, G. X., Liu, Y. M., Zhang, Q., Duan, A. M., Wang, T. M., Wan, R. J., Liu, X., Li, W. P., Wang, Z. Z., and Liang, X. Y. (2007). The Influence of Mechanical and Thermal Forcing by the Tibetan Plateau on Asian Climate. J. Hydrometeorol., 8(4), 770–789. https://doi.org/10.1175/JHM609.1

Wu, G. X., Liu, Y. M., He, B., Bao, Q., Duan, A. M., and Jin, F. F. (2012). Thermal controls on the Asian summer monsoon. Sci. Rep., 2, 404. https://doi.org/10.1038/srep00404

Yang, J. L., Liu, Q. Y., Xie, S. P., Liu, Z. Y., and Wu, L. X. (2007). Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34(2), L02708 https://doi.org/10.1029/2006GL028571

Yu, Y. Q., Zhang, X. H., and Guo, Y. F. (2004). Global Coupled Ocean-Atmosphere General Circulation Models in LASG/IAP. Advances in Atmospheric Sciences, 21(3), 444-455. https://doi.org/10.1360/05zd0005

Yu, Y. Q., Zhi, H., Wang, B., Wan, H., Li, C., Liu, H. L., Li, W., Zheng, W. P., and Zhou, T. J. (2008). Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25(4), 641–654. https://doi.org/10.1007/s00376-008-0641-0

Yu, Y. Q., He, J., Zheng, W. P., and Luan, Y. H. (2013). Annual cycle and interannual variability in the Tropical Pacific as simulated by three versions of FGOALS. Atmos. Adv. Sci., 30(3), 621–637. https://doi.org/10.1007/s00376-013-2184-2

Yu, Y. Q., Zheng, W. P., Wang, B., Liu, H. L., and Liu, J. P. (2011). Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean–atmosphere–land system model. Adv. Atmos. Sci., 28(1), 99–117. https://doi.org/10.1007/s00376-010-9112-5

Yu, Y. Q. (2014). Overview of FGOALS contribution to international climate modeling community during past years. In T. J. Zhou, et al. (Eds.), Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community (pp. 61–65). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-41801-3_9

Zhang, J., Li, L., Zhou, T. J., and Xin, X. G. (2013). Variation of surface temperature during the last millennium in a simulation with the FGOALS-gl climate system model. Adv. Atmos. Sci., 30(3), 699–712. https://doi.org/10.1007/s00376-013-2178-0

Zhang, P., Cheng, H., Edwards, R. L., Chen, F., Wang, Y., Yang, X., Liu, J., Tan, M., Wang, X., ... Johnson K. R. (2008). A Test of Climate, Sun, and Culture Relationships from an 1810-Year Chinese Cave Record. Science, 322, 940–942, https://doi.org/10.1126/science.1163965.

Zhang, R. H., Sumi, A., and Kimoto, M. (1996). Impact of El Niño on the East Asian monsoon: A diagnostic study of the '86/87 and '91/92 events. J. Meteor. Soc. Japan, 74(1), 49–62. https://doi.org/10.2151/jmsj1965.74.1_49

Zhang, X. H., Shi, G. Y., Liu, H., and Yu, Y. Q. (2000). IAP Global Ocean-Atmosphere-land System Model. Beijing: Science Press.

Zheng, W., Wu, B., He, J., and Yu, Y. (2013a). The East Asian summer monsoon at Mid-Holocene: results from PMIP3 simulations. Climate Past, 9(1), 453–466. https://doi.org/10.5194/cp-9-453-2013

Zheng, W. P., and Yu, Y. Q. (2013b). Paleoclimate simulations of the mid-Holocene and Last Glacial Maximum by FGOALS. Adv. Atmos. Sci., 30(3), 684–698. https://doi.org/10.1007/s00376-012-2177-6

Zheng, W., Zhang, Z., Chen, L., and Yu, Y. (2013c). The mid-Pliocene climate simulated by FGOALS-g2. Geosci. Model Dev., 6(4), 1127–1135. https://doi.org/10.5194/gmd-6-1127-2013

Zhou, T. J., and Yu, R. C. (2006). Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19(22), 5843–5858. https://doi.org/10.1175/JCLI3952.1

Zhou, T. J., Yu, Y. Q., Liu, H. L., Li, W., You, X. B., and Zhou, G. Q. (2007). Progress in the development and application of climate ocean models and ocean–atmosphere coupled models in China. Adv. Atmos. Sci., 24(6), 1109–1120. https://doi.org/10.1007/s00376-007-1109-3

Zhou, T. J., Li, B., Man, W. M., Zhang, L. X., and Zhang, J. (2011). A comparison of the medieval warm period, little ice age and 20th century warming simulated by the FGOALS climate system model. Chin. Sci. Bull., 56(28-29), 3028–3041. https://doi.org/10.1007/s11434-011-4641-6

Zhou, T. J., Zou, L. W., Wu, B., Jin, C. X., Song, F. F., Chen, X. L., and Zhang, L. X. (2014a). Development of earth/climate system models in China: a review from the coupled model intercomparison project perspective. J. Meteor. Res., 28(5), 762–779. https://doi.org/10.1007/s13351-014-4501-9

Zhou, T. J., Chen, X. L., Dong, L., Wu, B., Man, W. M., Zhang, L. X., Lin, R. P., Yao, J. C., Song, F. F., and Zhao, C. B. (2014b). Chinese contribution to CMIP5: an overview of five Chinese models' performances. J. Meteor. Res., 28(4), 481–509. https://doi.org/10.1007/s13351-014-4001-y

Zhou, T. J., Yu, Y. Q., Liu, Y. M., and Wang, B. (2014c). Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community. Berlin, Heidelberg: Springer.

Zhou, T. J., and Chen, X. L. (2015). Uncertainty in the 2°C warming threshold related to climate sensitivity and climate feedback. J. Meteor. Res., 29(6), 884–895. https://doi.org/10.1007/s13351-015-5036-4

Zhou, T., Turner, A. G., Kinter, J. L., Wang, B., Qian, Y., Chen, X., Wu, B., Wang, B., Liu, B., Zou, L., and He, B. (2016): GMMIP (v1.0) contribution to CMIP6: Global Monsoons Model Inter-comparison Project, Geosci. Model Dev., 9, 3589–3604, doi:10.5194/gmd-9-3589-2016.

Zhou, T. J., Chen, X. L., Wu, B., Guo, Z., Sun, Y., Zou, L. W., Man, W. M., Zhang, L. X., and He, C. (2017). A robustness analysis of CMIP5 models over the East Asia-Western North Pacific domain. Engineering, 3(5), 773–778. https://doi.org/10.1016/J.ENG.2017.05.018

Zhou, T. J., Sun, N., Zhang, W. X., Chen, X. L., Peng, D. D., Li, D. H., Ren, L. W., and Zuo, M. (2018a). When and how will the Millennium Silk Road witness 1.5°C and 2°C warmer worlds?. Atmos. Oceanic Sci. Lett., 11(2), 180–188. https://doi.org/10.1080/16742834.2018.1440134

Zhou, T. J., Ren, L. W., Liu, H. W., and Lu, J. W. (2018b). Impact of 1.5°C and 2.0°C global warming on aircraft takeoff performance in China. Sci. Bull., 63(11), 700–707. https://doi.org/10.1016/j.scib.2018.03.018

Zhou, X. J., Zhao, P., Liu, G., and Zhou, T. J. (2011). Characteristics of decadal-centennial-scale changes in East Asian summer monsoon circulation and precipitation during the Medieval Warm Period and Little Ice Age and in the present day. Chin. Sc.i Bull., 56(28-29): 3003–3011. https://doi.org/10.1007/s11434-011-4651-4

Zou, L. W., and Zhou, T. J. (2015). Asian summer monsoon onset in simulations and CMIP5 projections using four Chinese climate models. Adv. Atmos. Sci., 32(6), 794–806. https://doi.org/10.1007/s00376-014-4053-z

[1]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[2]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
Catalog

Figures And Tables

The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang