Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

2019, 3(1): 62-68. doi: 10.26464/epp2019007

SOLID EARTH: SEISMOLOGY

Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet

1. 

Department of Marine Sciences, Zhejiang University, Zhoushan Zhejiang 316021, China

2. 

State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

3. 

School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

4. 

State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Wuhan 430074, China

Corresponding author: XiaoBo He, xbhe@zju.edu.cn

Received Date: 2018-10-27
Web Publishing Date: 2019-01-01

The Tibetan Plateau, known as " the roof of the world” and " the third pole of the earth”, is a product of the collision between India and Asia during the last ~50 Ma. The regional tectonics–in particular, growth and expansion of the plateau–has been attributed primarily to deformation within the lithosphere. The role and pattern of the underlying asthenospheric flow, however, remain mostly unaddressed. In light of recent seismic tomographic images and published seismic anisotropic descriptions of the upper mantle, here we propose that an entrained mantle flow is likely to exist under Tibet, induced by the northward advancing Indian plate. The direction of mantle flow is characterized by a gradual rotation from northward in the south to eastward in the north as a result of deflection by the deep root of the Tarim block. The presence of an underlying mantle flow is not only able to account for the west-east oriented fast-axis of seismic anisotropy in northern Tibet, but can also adequately explain the sporadic null splitting in southern Tibet. Specifically, the null splitting results, at least in part, from upwellings of asthenospheric flow through tears of the underthrusting Indian plate that have been revealed by various seismic observations. The mantle flow may in turn promote the block extrusion under Tibet that has been observed in GPS measurements; hot asthenospheric upwellings may also lead to widespread post-collisional magmatism in southern Tibet.

Key words: Tibet; seismic anisotropy; mantle flow; null splitting; upwelling

Agius, M. R., and Lebedev, S. (2017). Complex, multilayered azimuthal anisotropy beneath Tibet: evidence for co-existing channel flow and pure-shear crustal thickening. Geophys. J. Int., 210(3), 1823–1844. https://doi.org/10.1093/gji/ggx266

Bao, X. W., Song, X. D., and Li, J. T. (2015). High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet. Sci. Lett., 417, 132–141. https://doi.org/10.1016/j.jpgl.2015.02.024

Barazangi, M., and Ni, J. (1982). Velocities and propagation characteristics of Pn and Sn beneath the Himalayan arc and Tibetan plateau: Possible evidence for underthrusting of Indian continental lithosphere beneath Tibet. Geology, 10(4), 179–185. https://doi.org/10.1130/0091-7613(1982)10<179:VAPCOP>2.0.CO;2

Chen, M., Niu, F. L., Tromp, J., Lenardic, A., Lee, C. T. A., Cao, W. R., and Ribeiro, J. (2017). Lithospheric foundering and underthrusting imaged beneath Tibet. Nat. Commun., 8, 15659. https://doi.org/10.1038/ncomms15659

Chen, W. P., Martin, M., Tseng, T. L., Nowack, R. L., Hung, S. H., and Huang, B. S. (2010). Shear-wave birefringence and current configuration of converging lithosphere under Tibet. Earth Planet. Sci. Lett., 295(1–2), 297–304. https://doi.org/10.1016/j.jpgl.2010.04.017

Chen, Y., Li, W., Yuan, X. H., Badal, J., and Teng, J. W. (2015). Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements. Earth Planet. Sci. Lett., 413, 13–24. https://doi.org/10.1016/j.jpgl.2014.12.041

Cherie, S. G., Gao, S. S., Liu, K. H., Elsheikh, A. A., Kong, F. S., Reed, C. A., and Yang, B. B. (2016). Shear wave splitting analyses in Tian Shan: Geodynamic implications of complex seismic anisotropy. Geochem. Geophys. Geosyst., 17(6), 1975–1989. https://doi.org/10.1002/2016GC006269

Chung, S. L., Liu, D. Y., Ji, J. Q., Chu, M. F., Lee, H. Y., Wen, D. J., Lo, C. H., Lee, T. Y., Qian, Q., and Zhang, Q. (2003). Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11), 1021–1024. https://doi.org/10.1130/G19796.1

Chung, S. L., Chu, M. F., Zhang, Y. Q., Xie, Y. W., Lo, C. H., Lee, T. Y., Lan, C. Y., Li, X. H., Zhang, Q., and Wang, Y. Z. (2005). Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci. Rev., 68(3–4), 173–196. https://doi.org/10.1016/j.earscirev.2004.05.001

Fu, Y. V., Chen, Y. J., Li, A. B., Zhou, S. Y., Liang, X. F., Ye, G. Y., Jin, G., Jiang, M. M., and Ning, J. Y. (2008). Indian mantle corner flow at southern Tibet revealed by shear wave splitting measurements. Geophy. Res. Lett., 35(2), L02308. https://doi.org/10.1029/2007GL031753

Gao, S. S., and Liu, K. H. (2009). Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau. Geochem. Geophys. Geosyst., 10(2), Q02008. https://doi.org/10.1029/2008GC002227

Gong, J. F., and Chen, Y. J. (2014). Evidence of lateral asthenosphere flow beneath the South China craton driven by both Pacific plate subduction and the India-Eurasia continental collision. Terra Nova, 26(1), 55–63. https://doi.org/10.1111/ter.12069

Guo, Z., Gao, X., Yao, H. J., Li, J., and Wang, W. M. (2009). Midcrustal low-velocity layer beneath the central Himalaya and southern Tibet revealed by ambient noise array tomography. Geochem. Geophys. Geosyst., 10(5), Q05007. https://doi.org/10.1029/2009GC002458

Haines, S. S., Klemperer, S. L., Brown, L., Guo, J. R., Mechie, J., Meissner, R., Ross, A., and Zhao, W. J. (2003). INDEPTH Ⅲ seismic data: from surface observations to deep crustal processes in Tibet. Tectonics, 22(1), 1001. https://doi.org/10.1029/2001TC001305

Heintz, M., Kumar, V. P., Gaur, V. K., Priestley, K., Rai, S. S., and Prakasam, K. S. (2009). Anisotropy of the Indian continental lithospheric mantle. Geophy. J. Inter., 179(3), 1341–1360. https://doi.org/10.1111/j.1365-246X.2009.04395.x

Hirn, A., Jiang, M., Sapin, M., Diaz, J., Nercessian, A., Liu, Q. T., Lépine, J. C., Shi, D. N., Sachpazi, M., … Gallart, J. (1995). Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet. Nature, 375(6532), 571–574. https://doi.org/10.1038/375571a0

Hou, Z. Q., Gao, Y. F., Qu, X. M., Rui, Z. Y., and Mo, X. X. (2004). Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet. Sci. Lett., 220(1–2), 139–155. https://doi.org/10.1016/S0012-821X(04)00007-X

Jolivet, L., Faccenna, C., Becker, T., Tesauro, M. Sternai, P., and Bouilhol, P. (2018). Mantle flow and deforming continents: From India-Asia convergence to Pacific subduction. Tectonics, 37(9), 2887–2914. https://doi.org/10.1029/2018TC005036

Kind, R., Yuan, X., Saul, J., Nelson, D., Sobolev, S. V., Mechie, J., Zhao, W., Kosarev, G., Ni, J., … Jiang, M. (2002). Seismic images of crust and upper mantle beneath Tibet: evidence for Eurasian plate subduction. Science, 298(5596), 1219–1221. https://doi.org/10.1126/science.1078115

Lavé, J., Avouac, J. P., Lacassin, R., Tapponnier, P., and Montagner, J. P. (1996). Seismic anisotropy beneath Tibet: evidence for eastward extrusion of the Tibetan lithosphere?. Earth Planet. Sci. Lett., 140(1–4), 83–96. https://doi.org/10.1016/0012-821X(96)00045-3

Levin, V., Roecker, S., Graham, P., and Hosseini, A. (2008). Seismic anisotropy indicators in Western Tibet: Shear wave splitting and receiver function analysis. Tectonophysics, 462(1–4), 99–108. https://doi.org/10.1016/j.tecto.2008.03.019

Li, J. T., and Song, X. D. (2018). Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet. Proc. Natl. Acad. Sci. USA, 115(33), 8296–8300. https://doi.org/10.1073/pnas.1717258115

Liang, X. F., Sandvol, E., Chen, Y. J., Hearn, T., Ni, J., Klemperer, S., Shen, Y., and Tilmann, F. (2012). A complex Tibetan upper mantle: A fragmented Indian slab and no south-verging subduction of Eurasian lithosphere. Earth Planet. Sci. Lett., 333–334, 101–111. https://doi.org/10.1016/j.jpgl.2012.03.036

Liang, X. F., Chen, Y., Tian, X. B., Chen, Y. J., Ni, J., Gallegos, A., Klemperer, S. L., Wang, M. L., Xu, T., … Teng, J. W. (2016). 3D imaging of subducting and fragmenting Indian continental lithosphere beneath southern and central Tibet using body-wave finite-frequency tomography. Earth Planet Sci. Lett., 443, 162–175. https://doi.org/10.1016/j.jpgl.2016.03.029

Liu, L. J., and Zhou, Q. (2015). Deep recycling of oceanic asthenosphere material during subduction. Geophys. Res. Lett., 42(7), 2204–2211. https://doi.org/10.1002/2015GL063633

Liu, M., Cui, X., and Liu, F. (2004). Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo–Asian collision?. Tectonophysics, 393(1–4), 29–42. https://doi.org/10.1016/j.tecto.2004.07.029

Liu, Q. Y., van der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., Qi, S. H., Wang, J., Huang, H., and Li, S. C. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci., 7(5), 361–365. https://doi.org/10.1038/ngeo2130

Liu, X. C., Wu, F. Y., Yu, L. J., Liu, Z. C., Ji, W. Q., and Wang, J. G. (2016). Emplacement age of leucogranite in the Kampa Dome, southern Tibet. Tectonophysics, 667, 163–175. https://doi.org/10.1016/j.tecto.2015.12.001

Liu, Z., and Park, J. (2017). Seismic receiver function interpretation: Ps splitting or anisotropic underplating?. Geophy. J. Int., 208(3), 1332–1341. https://doi.org/10.1093/gji/ggw455

Long, M. D., and Silver, P. G., (2009). Shear wave splitting and mantle anisotropy: measurements, interpretations, and new directions. Surv. Geophys., 30(4–5), 407–461. https://doi.org/10.1007/s10712-009-9075-1

McNamara, D. E., Owens, T. J., Silver, P. G., and Wu, F. T. (1994). Shear wave anisotropy beneath the Tibetan Plateau. J. Geophy. Res., 99(B7), 13655–13665. https://doi.org/10.1029/93JB03406

Miller, C., Schuster, R., Klötzli, U., Frank, W., and Purtscheller, F. (1999). Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. J. Petrol., 40(9), 1399–1424. https://doi.org/10.1093/petroj/40.9.1399

Molnar, P., England, P., and Martinod, J. (1993). Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys., 31(4), 357–396. https://doi.org/10.1029/93RG02030

Nelson, K. D., Zhao, W. J., Brown, L. D., Kuo, J., Che, J. K., Liu, X. W., Klemperer, S. L., Makovsky Y, Meissner, R., … Edwards, M. (1996). Partially molten middle crust beneath southern Tibet: Synthesis of Project INDEPTH results. Science, 274(5293), 1684–1688. https://doi.org/10.1126/science.274.5293.1684

Owens, T., and Zandt, G. (1997). Implications of crustal property variations for models of Tibetan plateau evolution. Nature, 387(6628), 37–43. https://doi.org/10.1038/387037a0

Pan, F. B., Zhang, H. F., Harris, N., Xu, W. C., and Guo, L. (2012). Oligocene magmatism in the eastern margin of the east Himalayan syntaxis and its implication for the India–Asia post-collisional process. Lithos, 154, 181–192. https://doi.org/10.1016/j.lithos.2012.07.004

Pandey, S., Yuan, X. H., Debayle, E. Tilmann, F., Priestley, K., and Li, X. Q. (2015). Depth-variant azimuthal anisotropy in Tibet revealed by surface wave tomography. Geophy. Res. Lett., 42(11), 4326–4334. https://doi.org/10.1002/2015GL063921

Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z. L., Shen, F., and Liu, Y. P. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788–790. https://doi.org/10.1126/science.276.5313.788

Sandvol, E., Ni, J., Kind, R., and Zhao, W. J. (1997). Seismic anisotropy beneath the southern Himalayas-Tibet collision zone. J. Geophy. Res., 102(B8), 17813–17823. https://doi.org/10.1029/97JB01424

Searle, M. P., Parrish, R. R., Hodges, K. V., Hurford, A., Ayres, M. W., and Whitehouse, M. J. (1997). Shisha Pangma Leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J. Geol., 105(3), 295–318. https://doi.org/10.1086/515924

Shapiro, N. M., Ritzwoller, M. H., Molnar, P., and Levin, V. (2004). Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 305(5681), 233–236. https://doi.org/10.1126/science.1098276

Silver, P. G. (1996). Seismic anisotropy beneath the continents: probing the depths of geology. Annu. Rev. Earth Planet. Sci., 24, 385–432. https://doi.org/10.1146/annurev.earth.24.1.385

Singh, A., Eken, T., Mohanty, D. D., Saikia, D., Singh, C., and Kumar, M. R. (2016). Significant seismic anisotropy beneath southern Tibet inferred from splitting of direct S-waves. Phys. Earth Planet. Inter., 250, 1–11. https://doi.org/10.1016/j.pepi.2015.11.001

Song, T. R. A., and Kawakatsu, H. (2012). Subduction of oceanic asthenosphere: Evidence from sub-slab seismic anisotropy. Geophys. Res. Lett., 39(17). https://doi.org/10.1029/2012GL052639

Sun, X., Lu, Y. J., McCuaig, T. C., Zheng, Y. Y., Chang, H. F., Guo, F., and Xu, L. J. (2018). Miocene ultrapotassic, high-Mg dioritic, and adakite-like rocks from Zhunuo in Southern Tibet: Implications for mantle metasomatism and porphyry copper mineralization in collisional orogens. J. Petrol., 59(3), 341–386. https://doi.org/10.1093/petrology/egy028

Tang, Y. C., Obayashi, M., Niu, F. L., Grand, S. P., Chen, Y. J., Kawakatsu, H., Tanaka, S., Ning, J. Y., and Ni, J. F. (2014). Changbaishan volcanism in northeast China linked to subduction-induced mantle upwelling. Nat. Geosci., 7(6), 470–475. https://doi.org/10.1038/ngeo2166

Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., and Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

Thorkelson, D. J., Madsen, J. K., and Sluggett, C. L. (2011). Mantle flow through the Northern Cordilleran slab window revealed by volcanic geochemistry. Geology, 39(3), 267–270. https://doi.org/10.1130/G31522.1

Tilmann, F., Ni, J., and INDEPTH Ⅲ Seismic Team. (2003). Seismic imaging of the downwelling Indian lithosphere beneath central Tibet. Science, 300(5624), 1424–1427. https://doi.org/10.1126/science.1082777

Wang, C. Y., Flesch, L. M., Silver, P. G., Chang, L. J., and Chan, W. W. (2008). Evidence for mechanically coupled lithosphere in central Asia and resulting implications. Geology, 36(5), 363–366. https://doi.org/10.1130/G24450A.1

Wessel, P., and Smith, W. H. F. (1995). New version of the generic mapping tools. EOS Trans. Am. Geophys. Union, 76(33), 329. https://doi.org/10.1029/95EO00198

Wu, C. L., Xu, T., Badal, J., Wu, Z., and Teng, J. W. (2015). Seismic anisotropy across the Kunlun fault and their implications for northward transforming lithospheric deformation in northeastern Tibet. Tectonophysics, 659, 91–101. https://doi.org/10.1016/j.tecto.2015.07.030

Wu, J., Zhang, Z. J., Kong, F. S., Yang, B. B., Yu, Y. Q., Liu, K. H., and Gao, S. S. (2015). Complex seismic anisotropy beneath western Tibet and its geodynamic implications. Earth Planet. Sci. Lett., 413, 167–175. https://doi.org/10.1016/j.jpgl.2015.01.002

Yin, A., and Harrison, T. M. (2000). Geologic evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci., 28, 211–280. https://doi.org/10.1146/annurev.earth.28.1.211

Yin, A. (2000). Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision. J. Geophys. Res., 105(B9), 21745–21759. https://doi.org/10.1029/2000JB900168

Yu, Y., and Chen, Y. J. (2016). Seismic anisotropy beneath the southern Ordos block and the Qinling-Dabie orogen, China: Eastward Tibetan asthenospheric flow around the southern Ordos. Earth Planet. Sci. Lett., 455, 1–6. https://doi.org/10.1016/j.jpgl.2016.08.026

Yuan, X. H., Ni, J., Kind, R., Mechie, J., and Sandvol, E. (1997). Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment. J. Geophys. Res., 102(B12), 27491–27500. https://doi.org/10.1029/97JB02379

Zhang, H., Zhao, J. M., Zhao, D. P., Yu, C. Q., Liu, H. B., and Hu, Z. G. (2016). Complex deformation in western Tibet revealed by anisotropic tomography. Earth Planet. Sci. Lett., 451, 97–107. https://doi.org/10.1016/j.jpgl.2016.07.020

Zhang, H., Zhao, D. P., Zhao, J. M., and Hu, Z. G. (2017). Internal deformation of lithosphere beneath central Tibet. J. Geophys. Res., 122(9), 7329–7342. https://doi.org/10.1002/2017JB014184

Zhang, H. F., Harris, N., Parrish, R., Kelley, S., Zhang, L., Rogers, N., Argles, T., and King, J. (2004). Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet. Sci. Lett., 228(1–2), 195–212. https://doi.org/10.1016/j.jpgl.2004.09.031

Zhang, P. Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z. J., Sun, J. Z., … You, X. Z. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812. https://doi.org/10.1130/G20554.1

Zhang, S. Q., and Karato, S. I. (1995). Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature, 375(6534), 774–777. https://doi.org/10.1038/375774a0

Zhao, J. M., Yuan, X. H., Liu, H. B., Kumar, P., Pei, S. P., Kind, R., Zhang, Z. J., Teng, J. W., Ding, L., … Wang, W. (2010). The boundary between the Indian and Asian tectonic plates below Tibet. Proc. Natl. Acad. Sci. USA, 107(25), 11229–11233. https://doi.org/10.1073/pnas.1001921107

Zhao, J. M., Murodov, D., Huang, Y., Sun, Y. S., Pei, S. P., Liu, H. B., Zhang, H., Fu, Y. Y., Wang, W., … Tang, W. (2014). Upper mantle deformation beneath central-southern Tibet revealed by shear wave splitting measurements. Tectonophysics, 627, 135–140. https://doi.org/10.1016/j.tecto.2013.11.003

Zhao, L., Zheng, T. Y., Lu, G., and Ai, Y. S. (2011). No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia collision: constraints from new SKS wave splitting measurements. Geophys. J. Int., 187(2), 1027–1037. https://doi.org/10.1111/j.1365-246X.2011.05201.x

Zhao, W. J., Kumar, P., Mechie, J., Kind, R., Meissner, R., Wu, Z. H., Shi, D. N., Su, H. P., Xue, G. Q., … Tilmann, F. (2011). Tibetan plate overriding the Asian plate in central and northern Tibet. Nat. Geosci., 4(12), 870–873. https://doi.org/10.1038/ngeo1309

[1]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[2]

XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009

[3]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[4]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[5]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

[6]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics. doi: 10.26464/epp2019025

[7]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[8]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[9]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He