Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics. doi: 10.26464/epp2019002

doi: 10.26464/epp2019002

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Magnetosphere response to the IMF turning from north to south

1. 

Institute of Space Weather, School of Math & Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. 

Beijing Institute of Applied Meteorology, Beijing 100029, China

3. 

School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Corresponding author: JianYong Lu, jylu@nuist.edu.cn

Received Date: 2018-10-01
Web Publishing Date: 2019-12-01

In this paper, the Space Weather Modeling Framework (SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its direction from north to south. Since most current models do not take into account convective effects of the inner magnetosphere, we first study the importance of Rice Convection Model (RCM) in the global model. We then focus on the following four aspects of the magnetosphere’s response: the magnetosphere’s density distribution, the structure of its magnetic field lines, the area of the polar cap boundary, and the corresponding ionospheric current change. We find that (1) when the IMF changes from north to south in this event, high magnetosheath density is observed to flow downstream along the magnetopause with the solar wind; low-latitude reconnection at dayside occurs under the southward IMF, while the magnetic field lines in the tail lobe caudal, caused by the nightside high latitude reconnection, extend into the interplanetary space. Open magnetic field lines exist simultaneously at both high and low latitudes at the magnetopause; (2) the area of the polar cap is obviously increased if the IMF turns from the north to the south; this observation is highly consistent with empirical observations; (3) the ionospheric field align current in the northern hemisphere is stronger than in the southern hemisphere and also increases as the IMF changes from north to south. SWMF with the Rice Convection effect provides reliable modeling of the magnetospheric and ionospheric response to this solar wind variation.

Key words: magnetosphere, global MHD simulation, polar cap, magnetic reconnection

De Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., and Tóth, G. (2004). Coupling of a global MHD code and an inner magnetospheric model: Initial results. J. Geophys. Res., 109(A12), A12219. https://doi.org/10.1029/2003JA010366

Evans, L. C., and Stone, E. C. (1972). Electron polar cap and the boundary of open geomagnetic field lines. J. Geophys. Res., 77(28), 5580–5584. https://doi.org/10.1029/JA077i028p05580

Fedder, J. A., and Lyon, J. G. (1995). The Earth’s magnetosphere is 165 RE long: Self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field. J. Geophys. Res., 100(A3), 3623–3635. https://doi.org/10.1029/94JA02633

Feldman, W. C., Hones, E. W., Barraclough, B. L., Reeves, G. D., Belian, R. D., Cayton, T. E., Lee, P., Lepping, R. P., Trombka, J. I., …Rich, F. J. (1995). Possible conjugate reconnection at the high-latitude magnetopause. J. Geophys. Res., 100(A8), 14913–14923. https://doi.org/10.1029/95JA01217

García, K. S., and Hughes W. J. (2007). Finding the Lyon-Fedder-Mobarry magnetopause: A statistical perspective. J. Geophys. Res., 112(A6). https://doi.org/10.1029/2006JA012039

Gombosi, T. I., DeZeeuw, D. L., Groth, C. P. T., and Powell, K. G. (2000). Magnetospheric configuration for Parker-spiral IMF conditions: results of a 3D AMR MHD simulation. Adv. Space Res., 26(1), 139–149. https://doi.org/10.1016/S0273-1177(99)01040-6

Gou, X. C., Shi, Q. Q., Tian, A. M., Sun, W. J., Dunlop, M. W., Fu, S. Y., Zong, Q. G., Facskó, G., Nowada, M., … Shen, X. C. (2016). Solar wind plasma entry observed by cluster in the high-latitude magnetospheric lobes. J. Geophys. Res., 121(5), 4135–4144. https://doi.org/10.1002/2015JA021578

Guo, J. G., Shi, J. K., Cheng, Z. W., Zhang, Z. Y., Wang, Z., Zhang, T. L., Liu, Z. X., and Dunlop, M. (2013). Variation of dependence of the cusp location at different altitude on the dipole tilt. Chin. Sci. Bull., 58(28-29), 3541–3545. https://doi.org/10.1007/s11434-013-5831-1

Jing, H., Lu, J. Y., Kabin, K., Zhao, J. S., Liu, Z. Q., Yang, Y. F., Zhao, M. X., and Wang, M. (2014). MHD simulation of energy transfer across magnetopause during sudden changes of the IMF orientation. Planet. Space Sci., 97, 50–59. https://doi.org/10.1016/j.pss.2014.04.001

Kabin, K., Rankin, R., Marchand, R., Gombosi, T. I., Clauer, C. R., Ridley, A. J., Papitashvili, V. O., and DeZeeuw, D. L. (2003). Dynamic response of Earth’s magnetosphere to By reversals. J. Geophys. Res., 108(A3), 1132. https://doi.org/10.1029/2002JA009480

Knipp, D., Eriksson, S., Kilcommons, L., Crowley, G., Lei, J., Hairston, M., and Drake, K. (2011). Extreme poynting flux in the dayside thermosphere: Examples and statistics. Geophys. Res. Lett., 38(16), L16102. https://doi.org/10.1029/2011GL048302

Korth, H., Anderson, B. J., Frey, H. U., and Waters, C. L. (2005). High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF. Ann. Geophys., 23(4), 1295–1310. https://doi.org/10.5194/angeo-23-1295-2005

Li, W., Knipp, D., Lei, J., and Raeder, J. (2011). The relation between dayside local Poynting flux enhancement and cusp reconnection. J. Geophys.Res., 116(A8), A08301. https://doi.org/10.1029/2011JA016566

Liu, Z. Q., Lu, J. Y., Kabin, K., Yang, Y. F., Zhao, M. X., and Cao, X. (2012). Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations. J. Geophys. Res., 117(A7), A07207. https://doi.org/10.1029/2011JA017441

Lu, J. Y., Liu, Z. Q., Kabin, K., Zhao, M. X., Liu, D. D., Zhou, Q., and Xiao, Y. (2011). Three dimensional shape of the magnetopause: Global MHD results. J. Geophy. Res., 116(A9), A09237. https://doi.org/10.1029/2010JA016418

Lu, J. Y., Liu, Z. Q., Kabin, K., Jing, H., Zhao, M. X., and Wang, Y. (2013a). The IMF dependence of the magnetopause from global MHD simulations. J. Geophys. Res., 118(6), 3113–3125. https://doi.org/10.1002/jgra.50324

Lu, J. Y., Jing, H., Liu, Z. Q., Kabin, K., and Jiang, Y. (2013b). Energy transfer across the magnetopause for northward and southward interplanetary magnetic fields. J. Geophys. Res., 118(5), 2021–2033. https://doi.org/10.1002/jgra.50093

Luhmann, J. G., Walker, R. J., Russell, C. T., Crooker, N. U., Spreiter, J. R., and Stahara, S. S. (1984). Patterns of potential magnetic field merging sites on the dayside magnetopause. J. Geophys. Res., 89(A3), 1739–1742. https://doi.org/10.1029/JA089iA03p01739

Milan S. E., Lester M., Cowley S. W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., Sofko, G., and Villain, J. P. (2003). Variations in the polar cap area during two substorm cycles. Ann. Geophys., 21(5), 1121–1140. https://doi.org/10.5194/angeo-21-1121-2003

Newell, P. T., and Meng, C. I. (1989). Dipole tilt angle effects on the latitude of the cusp and cleft/low- altitude boundary layer. J. Geophys. Res., 94(A6), 6949–6953. https://doi.org/10.1029/JA094iA06p06949

Ogino, T. (1986). A three-dimensional MHD simulation of the interaction of the solar wind with the Earth’s magnetosphere: the generation of field-aligned currents. J. Geophys. Res., 91(A6), 6791–6806. https://doi.org/10.1029/JA091iA06p06791

Øieroset, M., Raeder, J., Phan, T. D., Wing, S., McFadden, J. P., Li, W., Fujimoto, M., Rème, H., and Balogh, A. (2005). Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22-24, 2003. Geophys. Res. Lett., 32(12), L12S07. https://doi.org/10.1029/2004GL021523

Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., and De Zeeuw, D. L. (1999). A solution- adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 154(2), 284–309. https://doi.org/10.1006/jcph.1999.6299

Rae, I. J., Kabin, K., Lu, J. Y., Rankin, R., Milan, S. E., Fenrich, F. R., Watt, C. E. J., Zhang, J. C., Ridley, A. J., … DeZeeuw, D. L. (2010). Comparison of the open-closed separatrix in a global magnetospheric simulation with observations: The role of the ring current. J. Geophys. Res., 115(A8), A08216. https://doi.org/10.1029/2009JA015068

Raeder, J., McPherron, R. L., Frank, L. A., Kokubun, S., Lu, G., Mukai, T., Paterson, W. R., Sigwarth, J. B., Singer, H. J., and Slavin, J. A. (2000). Global simulation of the Geospace Environment Modeling substorm challenge event. J. Geophys. Res., 106(A1), 381–395. https://doi.org/10.1029/2000JA000605

Ridley, A. J., Hansen, K. C., Tóth, G., De Zeeuw, D. L., Gombosi, T. I., and Powell, K. G. (2002). University of Michigan MHD results of the geospace global circulation model metrics challenge. J. Geophys. Res., 107(A10), 1290. https://doi.org/10.1029/2001JA000253

Russell, C. T., and Elphic, R. C. (1978). Initial ISEE magnetometer results: Magnetopause observations. Space Sci. Rev., 22(6), 681–715. https://doi.org/10.1007/BF00212619

Shepherd, S. G., Greenwald, R. A., and Ruohoniemi, J. M. (2002). Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi-steady solar wind and interplanetary magnetic field conditions. J. Geophys. Res., 107(A7), 1094. https://doi.org/10.1029/2001JA000152

Shi, Q. Q., Zong, Q.-G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., Chen, Y., Li, L., Xia, L. D., Liu, Z. X., Fazakerley, A. N., Reme, H., and Lucek, E. (2009). Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. J. Geophys. Res., 114(A12), A12219. https://doi.org/10.1029/2009JA014475

Shi, Q. Q., Zong, Q. G., Fu, S. Y., Dunlop, M. W., Pu, Z. Y., Parks, G. K., Wei, Y., Li, W. H., Zhang, H., … Lucek, E. (2013). Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nat. Commun., 4, 1466. https://doi.org/10.1038/ncomms2476

Song, P., DeZeeuw, D. L., Gombosi, T. I., Groth, C. P. T., and Powell, K. G. (1999). A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field. J. Geophys. Res., 104(A12), 28361–28378. https://doi.org/10.1029/1999JA900378

Toffoletto, F., Sazykin, S., Spiro, R., and Wolf, R. (2003). Inner magnetospheric modeling with the Rice Convection Model. Space Sci. Rev., 107(1-2), 175–196. https://doi.org/10.1023/A:1025532008047

Tóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R.; de Zeeuw, D. L., Hansen, K. C., Kane, K. J., Manchester, W. B., … Kóta, J. (2005). Space Weather Modeling Framework: A new tool for the space science community. J. Geophys. Res., 110(A12), A12226. https://doi.org/10.1029/2005JA011126

Tóth, G., De Zeeuw, D. L., Gombosi, T. I., Manchester, W. B., Ridley, A. J., Sokolov, I. V., and Roussev, I. I. (2007). Sun-to-thermosphere simulation of the 28-30 October 2003 storm with the Space Weather Modeling Framework. Space Wea., 5(6), S06003. https://doi.org/10.1029/2006SW000272

Tsyganenko, N. A., and Stern, D. P. (1996). Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res., 101(A12), 27187–27198. https://doi.org/10.1029/96JA02735

Wang, J. Y., Wang, C., Huang, Z. H., and Sun, T. R. (2014). Effects of the interplanetary magnetic field on the twisting of the magnetotail: Global MHD results. J. Geophys. Res., 119(3), 1887–1897. https://doi.org/10.1002/2013JA019257

Watanabe, M., Kabin, K., Sofko, G. J., Rankin, R., Gombosi, T. I., Ridley, A. J., and Clauer, C. R. (2005). Internal reconnection for northward interplanetary magnetic field. J. Geophys. Res., 110(A6), A06210. https://doi.org/10.1029/2004JA010832

Yang, Y. F., Lu, J. Y., Wang, J. S., Peng, Z., Qian, Q., and Xiao, Y. (2011). Different response of dayside auroras to increases in solar wind dynamic pressure. J. Geophys. Res., 116(A8), A08314. https://doi.org/10.1029/2010JA016385

Zhang, J. C., Liemohn, M. W., de Zeeuw, D. L., Borovsky, J. E., Ridley, A. J., Toth, G., Sazykin, S., Thomsen, M. F., Kozyra, J. U., … Wolf, R. A. (2007). Understanding storm-time ring current development through data-model comparisons of a moderate storm. J. Geophys. Res., 112(A4), A04208. https://doi.org/10.1029/2006JA011846

[1]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[2]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[3]

ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007

[4]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics. doi: 10.26464/epp2019003

[5]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[6]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[7]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[8]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[9]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[10]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Magnetosphere response to the IMF turning from north to south

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan