\begin{document}$\psi = 2\left( {{V_{\rm SH}} - {V_{\rm SV}}} \right)/\left( {{V_{\rm SH}} + {V_{\rm SV}}} \right)$\end{document}. At a shallow depth, we observed significant radial anisotropy under major basins, which may be related to thick sedimentary layers. At the mid to lower crust, most of the Chinese continent showed strong positive radial anisotropy (SH > SV). Central and southern Tibet showed strong positive anisotropy, whereas the radial anisotropy was relatively weak at the northern and eastern margins, which suggests a change in deformation style from the plateau interior to its margins. The North China craton showed prominent positive radial anisotropy, which may be related to decratonization and strong extension since the Mesozoic Era. Love waves are less well retrieved than Rayleigh waves from ambient noise cross-correlations. Increasing the duration of the cross-correlation data beyond 4 to 8 years may not aid in retrieving Love waves of longer periods, for which improved methods need to be explored." />

Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics. doi: 10.26464/epp2019023

doi: 10.26464/epp2019023

SOLID EARTH: TECTONOPHYSICS

Ambient noise Love wave tomography of China

1. 

Institute of Geophysics, Chinese Earthquake Administration, Beijing 100081, China

2. 

Department of Seismic Networks, China Earthquake Networks Center, Beijing 100045, China

3. 

Department of Geology, University of Illinois at Urbana-Champaign, IL 61801, USA

4. 

School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

Corresponding author: XiaoDong Song, xiao.d.song@gmail.com

Received Date: 2018-12-19
Accepted Date: 2019-03-01
Web Publishing Date: 2019-03-01

We first report on the Love wave tomography of China based on ambient noise cross-correlations. We used 3 years of continuous waveform data recorded by 206 broadband seismic stations on the Chinese Mainland and 36 neighboring global stations and obtained Love wave empirical Green’s functions from cross-correlations of the horizontal components. The Love wave group velocity dispersion measurements were used to construct dispersion maps of 8- to 40-s periods, which were then inverted to obtain a three-dimensional horizontally polarized S-wave (SH) velocity structure. The resolution was approximately 4° × 4° and 8° × 8° for eastern and western China, respectively, and extended to a depth of approximately 50 km. The SH model was generally consistent with a previously published vertically polarized S-wave (SV) model and showed large-scale features that were consistent with geological units, such as the major basins and changes in the crustal thickness across the north-south gravity lineament. The SH and SV models also showed substantial differences, which were used to examine the subsurface radial anisotropy. We define the radial anisotropy parameter as \begin{document}$\psi = 2\left( {{V_{\rm SH}} - {V_{\rm SV}}} \right)/\left( {{V_{\rm SH}} + {V_{\rm SV}}} \right)$\end{document}. At a shallow depth, we observed significant radial anisotropy under major basins, which may be related to thick sedimentary layers. At the mid to lower crust, most of the Chinese continent showed strong positive radial anisotropy (SH > SV). Central and southern Tibet showed strong positive anisotropy, whereas the radial anisotropy was relatively weak at the northern and eastern margins, which suggests a change in deformation style from the plateau interior to its margins. The North China craton showed prominent positive radial anisotropy, which may be related to decratonization and strong extension since the Mesozoic Era. Love waves are less well retrieved than Rayleigh waves from ambient noise cross-correlations. Increasing the duration of the cross-correlation data beyond 4 to 8 years may not aid in retrieving Love waves of longer periods, for which improved methods need to be explored.

Key words: ambient noise tomography, Love wave, radial anisotropy, China

Baig, A. M., Campillo, M., and Brenguier, F. (2009). Denoising seismic noise cross correlations. J. Geophys. Res. Solid Earth, 114(B8), B08310. https://doi.org/10.1029/2008JB006085

Bao, X. W., Song, X. D., and Li, J. T. (2015). High-resolution lithospheric structure beneath Mainland China from ambient noise and earthquake surface-wave tomography. Earth Planet. Sci. Lett., 417, 132–141. https://doi.org/10.1016/j.jpgl.2015.02.024

Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F. C., Moschett, M. P., Shapiro, N. M., and Yang, Y. J. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169(3), 1239–1260. https://doi.org/10.1111/j.1365-246X.2007.03374.x

Bensen, G. D., Ritzwoller, M. H., and Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. J. Geophys. Res. Solid Earth, 113(B5), B05306. https://doi.org/10.1029/2007JB005248

Brenguier, F., Shapiro, N. M., Campillo, M., Ferrazzini, V., Duputel, Z., Coutant, O., and Nercessian, A. (2008). Towards forecasting volcanic eruptions using seismic noise. Nat. Geosci., 1(2), 126–130. https://doi.org/10.1038/ngeo104

Chen, L., Cheng, C., and Wei, Z. G. (2009). Seismic evidence for significant lateral variations in lithospheric thickness beneath the central and western North China Craton. Earth Planet. Sci. Lett., 286(1-2), 171–183. https://doi.org/10.1016/j.jpgl.2009.06.022

Cheng, C., Chen, L., Yao, H. J., Jiang, M. M., and Wang, B. Y. (2013). Distinct variations of crustal shear wave velocity structure and radial anisotropy beneath the North China Craton and tectonic implications. Gondwana Res., 23(1), 25–38. https://doi.org/10.1016/j.gr.2012.02.014

Dziewonski, A. M., and Anderson, D. L. (1981). Preliminary reference Earth model. Phys. Earth Planet. Inter., 25(4), 297–356. https://doi.org/10.1016/0031-9201(81)90046-7

Efron, B., and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. New York: Chapman and Hall.222

Fang, L. H., Wu, J. P., Wang, W. L., Wang, C. Z., and Yang, T. (2013). Love wave tomography from ambient seismic noise in North-China. Chinese J. Geophys., 56(7), 2268–2279. https://doi.org/10.6038/cjg20130714

Fu, Y. V., Gao, Y., Li, A. B., Lu, L. Y., Shi, Y. T., and Zhang, Y. (2016). The anisotropic structure in the crust in the northern part of North China from ambient seismic noise tomography. Geophys. J. Int., 204(3), 1649–1661. https://doi.org/10.1093/gji/ggv549

Guo, Z., Yang, Y. J., and Chen, Y. J. (2016). Crustal radial anisotropy in Northeast China and its implications for the regional tectonic extension. Geophys. J. Int., 207(1), 197–208. https://doi.org/10.1093/gji/ggw261

He, W. G., Chen, Y. S., Ye, Q. D., An, M. J., and Dong, S. W. (2015). Ambient noise Love-wave tomography in Qinling orogeny and surrounding area. Prog. Geophys., 30(1), 47–56. https://doi.org/10.6038/pg2015108

Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett., 84(6), 1081–1088. https://doi.org/10.1785/0220110096

Huang, H., Yao, H. J., and Van Der Hilst, R. D. (2010). Radial anisotropy in the crust of SE Tibet and SW China from ambient noise interferometry. Geophys. Res. Lett., 37(21), L21310. https://doi.org/10.1029/2010GL044981

Laske, G., Masters, G., Ma, Z. T., and Pasyanos, M. (2013). Update on CRUST1.0— A 1-degree global model of earth’s crust. In EGU General Assembly Conference. Vienna: AGU.222

Li, H. Y., Su, W., Wang, C. Y., Huang, Z. X., and Lv, Z. Y. (2010). Ambient noise Love wave tomography in the eastern margin of the Tibetan Plateau. Tectonophysics, 491(1-4), 194–204. https://doi.org/10.1016/j.tecto.2009.12.018

Li, H. Y., Li, S., Song, X. D., Gong, M., Li, X., and Jia, J. (2012). Crustal and uppermost mantle velocity structure beneath northwestern China from seismic ambient noise tomography. Geophys. J. Int., 188(1), 131–143. https://doi.org/10.1111/j.1365-246X.2011.05205.x

Li, H. Y., Shen, Y., Huang, Z. X., Li, X. F., Gong, M., Shi, D. N., Sandvol, E., and Li, A. B. (2014). The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography. J. Geophys. Res. Solid Earth, 119(3), 1954–1970. https://doi.org/10.1002/2013JB010374

Li, L., Li, A. B., Murphy, M. A., and Fu, Y. V. (2016). Radial anisotropy beneath northeast Tibet, implications for lithosphere deformation at a restraining bend in the Kunlun fault and its vicinity. Geochem. Geophys. Geosyst., 17(9), 3674–3690. https://doi.org/10.1002/2016GC006366

Lin, F. C., Moschetti, M. P., and Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophys. J. Int., 173(1), 281–298. https://doi.org/10.1111/j.1365-246X.2008.03720.x

Lin, F. C., Ritzwoller, M. H., and Snieder, R. (2010). Eikonal tomography: Surface wave tomography by phase front tracking across a regional broad-band seismic array. Geophys. J. Int., 177(3), 1091–1110. https://doi.org/10.1111/j.1365-246X.2009.04105.x

Lin, F. C., and Ritzwoller, M. H. (2011). Helmholtz surface wave tomography for isotropic and azimuthally anisotropic structure. Geophys. J. Int., 186(3), 1104–1120. https://doi.org/10.1111/j.1365-246X.2011.05070.x

Lobkis, O. I., and Weaver, R. L. (2001). On the emergence of the Green’s function in the correlations of a diffuse field. J. Acoust. Soc. Am., 110(6), 3011–3017. https://doi.org/10.1121/1.1417528

Menzies, M. A., and Xu, Y. G. (1998). Geodynamics of the North China Craton. In M. F. J., Flower, et al. (Eds.), Mantle Dynamics and Plate Interactions in East Asia. Washington: AGU. https://doi.org/10.1029/GD027p0155222

Peng, Y. J., Su, W., Zheng, Y. J., and Huang, Z. X. (2002). Love wave seismic tomography of China and vicinal sea areas. Chinese J. Geophys. , 45(6), 792–801. https://doi.org/10.3321/j.issn:0001-5733.2002.06.006

Rawlinson, N., and Sambridge, M. (2004a). Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics, 69(5), 1338–1350. https://doi.org/10.1190/1.1801950

Rawlinson, N., and Sambridge, M. (2004b). Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int., 156(3), 631–647. https://doi.org/10.1111/j.1365-246X.2004.02153.x

Rawlinson, N., and Sambridge, M. (2005). The fast marching method: An effective tool for tomographic imaging and tracking multiple phases in complex layered media. Explor. Geophys., 36(4), 341–350. https://doi.org/10.1071/EG05341

Schimmel, M., and Paulssen, H. (1997). Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys. J. Int., 130(2), 497–505. https://doi.org/10.1111/j.1365-246X.1997.tb05664.x

Shapiro, N. M., and Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys. Res. Lett., 31(7), L07614. https://doi.org/10.1029/2004GL019491

Shapiro, N. M., Ritzwoller, M. H., Molnar, P., and Levin, V. (2004). Thinning and flow of Tibetan crust constrained by seismic anisotropy. Science, 305(5681), 233–236. https://doi.org/10.1126/science.1098276

Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715), 1615–1618. https://doi.org/10.1126/science.1108339

Shen, W. S., Ritzwoller, M. H., Kang, D., Kim, Y. K., Lin, F. C., Ning, J. Y., Wang, W. T., Zheng, Y., and Zhou, L. Q. (2016). A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys. J. Int., 206(2), 954–979. https://doi.org/10.1093/gji/ggw175

Sun, X. L., Song, X. D., Zheng, S. H., Yang, Y. J., and Ritzwoller, M. H. (2010). Three dimensional shear wave velocity structure of the crust and upper mantle beneath China from ambient noise surface wave tomography. Earthq. Sci., 23(5), 449–463. https://doi.org/10.1007/s11589-010-0744-4

Tichelaar, B. W., and Ruff, L. J. (1989). How good are our best models? Jackknifing, bootstrapping, and earthquake depth. Eos Trans. Am. Geophys. Union, 70(20), 593–606. https://doi.org/10.1029/89EO00156

Weaver, R. L., and Lobkis, O. I. (2004). Diffuse fields in open systems and the emergence of the Green’s function (L). J. Acoust. Soc. Am., 116(5), 2731–2734. https://doi.org/10.1121/1.1810232

Xie, J. Y., Ritzwoller, M. H., Shen, W. S., Yang, Y. J., Zheng, Y., and Zhou, L. Q. (2013). Crustal radial anisotropy across Eastern Tibet and the Western Yangtze Craton. J. Geophys. Res. Solid Earth, 118(8), 4226–4252. https://doi.org/10.1002/jgrb.50296

Xu, X. M., Ding, Z. F., Ye, Q. D., and Lv, M. M. (2015). The crustal and upper mantle structure beneath the South-North seismic zone from the inversion of Love wave phase velocity. Chinese J. Geophys. , 58(11), 3928–3940. https://doi.org/10.6038/cjg20151104

Yang, Y. J., Ritzwoller, M. H., Levshin, A. L., and Shapiro, N. M. (2007). Ambient noise Rayleigh wave tomography across Europe. Geophys. J. Int., 168(1), 259–274. https://doi.org/10.1111/j.1365-246X.2006.03203.x

Yang, Y. J., Zheng, Y., Chen, J., Zhou, S. Y., Celyan, S., Sandvol, E., Tilmann, F., Priestley, K., Hearn, T. M., … Ritzwoller, M. H. (2010). Rayleigh wave phase velocity maps of Tibet and the surrounding regions from ambient seismic noise tomography. Geochem. Geophys. Geosyst., 11(8), Q08010. https://doi.org/10.1029/2010GC003119

Yao, H. J., Van Der Hilst, R. D., and De Hoop, M. V. (2006). Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys. J. Int., 166(2), 732–744. https://doi.org/10.1111/j.1365-246X.2006.03028.x

Yao, H. J., Beghein, C., Van Der Hilst, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—II. Crustal and upper-mantle structure. Geophys. J. Int., 173(1), 205–219. https://doi.org/10.1111/j.1365-246X.2007.03696.x

Zhang, J., and Yang, X. N. (2013). Extracting surface wave attenuation from seismic noise using correlation of the coda of correlation. J. Geophys. Res. Solid Earth, 118(5), 2191–2205. https://doi.org/10.1002/jgrb.50186

Zheng, D. C., and Wang, J. (2017). Love wave tomography in Sichuan-Yunnan area from ambient noise. Acta Seismol. Sin. , 39(5), 633–647

Zheng, S. H., Sun, X. L., Song, X. D., Yang, Y. J., and Ritzwoller, M. H. (2008). Surface wave tomography of China from ambient seismic noise correlation. Geochem. Geophys. Geosyst., 9(5), Q05020. https://doi.org/10.1029/2008GC001981

Zheng, Y., Shen W. S., Zhou, L. Q., Yang, Y. J., Xie, Z. J., and Ritzwoller, M. H. (2011). Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography. J. Geophys. Res. Solid Earth, 116(B12), B12312. https://doi.org/10.1029/2011JB008637

Zhou, L. Q., Xie, J. Y., Shen, W. S., Zheng, Y., Yang, Y. J., Shi, H. X., and Ritzwoller, M. H. (2012). The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography. Geophys. J. Int., 189(3), 1565–1583. https://doi.org/10.1111/j.1365-246X.2012.05423.x

Zhu, R. X., Chen, L., Wu, F. Y., and Liu, J. L. (2011). Timing, scale and mechanism of the destruction of the North China Craton. Sci. China Earth Sci., 54(6), 789–797. https://doi.org/10.1007/s11430-011-4203-4

[1]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[2]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[3]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[4]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[5]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[6]

XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041

[7]

YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou, 2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125. doi: 10.26464/epp2019015

[8]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

[9]

Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044

[10]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[11]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[12]

Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

[13]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics. doi: 10.26464/epp2019025

[14]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Ambient noise Love wave tomography of China

ZhiGao Yang, XiaoDong Song