Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

2018, 2(2): 139-149. doi: 10.26464/epp2018014

SOLID EARTH: SEISMOLOGY

The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications

1. 

Department of Geosciences, National Taiwan University, Taipei, Taiwan, China

2. 

School of Earth and Space Sciences, Peking University, Beijing 100871, China

3. 

Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China

4. 

Department of Earth Science, University of California, Santa Barbara, CA, U.S.A.

Corresponding author: Li Zhao, lizhaopku@pku.edu.cn

Received Date: 2018-02-17
Web Publishing Date: 2018-03-01

The 13 November 2016 Kaikoura earthquake occurred in the northeastern coastal region of the South Island, New Zealand. The Mw 7.8 mainshock generated a complex pattern of surface ruptures, and was followed within about 12 hours by three moderate shocks of Mw ≥ 6.0. Here we use teleseismic waveforms to invert for the source rupture of the Kaikoura earthquake. The resulting slip-distribution model exhibits insignificant slip near the hypocenter and three pockets of major slip zones with distinct senses of motion. The mainshock started from a rupture near the hypocenter, grew into thrust on shallow crustal faults ~50 km northeast of the hypocenter, and then developed into two slip zones: a deeper one with oblique thrust and a shallower one with almost purely right-lateral strike-slip. Locations of the thrust and strike-slip motions in the slip-distribution model agree well with reported coastal uplifts and horizontal offsets. The overall slip pattern is dominated by horizontal motion, especially at shallow depth, due to the partitioning of thrust and strike-slip motions above the subduction zone megathrust. Aftershock distribution suggests that most aftershocks tend to occur near the edges of the major slip zones of the mainshock. This observation on aftershock locations may provide useful information for seismic hazard assessments after large earthquakes.

Key words: slip distribution, Kaikoura earthquake, aftershock distribution, slip partitioning

Anderson, H., and Webb, T. H. (1994). New Zealand seismicity: patterns revealed by the upgraded National Seismograph Network. New Zealand J. Geol. Geophys., 37, 477–493. https://doi.org/10.1080/00288306.1994.9514633 doi: 10.1080/00288306.1994.9514633

Avouac, J.-P., Meng, L. S., Wei, S. J., Wang, T., and Ampuero, J.-P. (2015). Lower edge of locked Main Himalaya Thrust unzipped by the 2015 Gorkha earthquake. Nat. Geosci., 8, 708–711. https://doi.org/10.1038/ngeo2518 doi: 10.1038/ngeo2518

Barnes, P. M. (2009). Postglacial (after 20 ka) dextral slip rate of the offshore Alpine fault, New Zealand. Geology, 37, 3–6. https://doi.org/10.1130/G24764A.1 doi: 10.1130/G24764A.1

Bassin, C., Laske, G., and Masters, T. G. (2000). The current limits of resolution for surface wave tomography in North America. EOS Trans. AGU, 81, F897. (请核对页码)

Bradley, B. A., Razafindrakoto, N. T., and Polak, V. (2017). Ground-motion observations from the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake and insights from broadband simulations. Seismol. Res. Lett., 88, 740–756. https://doi.org/10.1785/0220160225 doi: 10.1785/0220160225

Cesca, S., Zhang, Y., Mouslopoulou, V., Wang, R., Saul, J., Savage, M., Heimann, S., Kufner, S.-K., Oncken, O., and Dahm, T. (2017). Complex rupture process of the Mw7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence. Earth Planet. Sci. Lett., 478, 110–120. https://doi.org/10.1016/j.jpgl.2017.08.024 doi: 10.1016/j.jpgl.2017.08.024

Clayton, B. S., Hartzell, S. H., Moschetti, M. P., and Minson, S. E. (2017). Finite-fault Bayesian inversion of teleseismic body waves. Bull. Seismol. Soc. Am., 107, 1526–1544. https://doi.org/10.1785/0120160268 doi: 10.1785/0120160268

COMET-NERC. http://comet.nerc.ac.uk222

Duputel, Z., and Rivera, L. (2017). Long-period analysis of the 2016 Kaikoura earthquake. Phys. Earth Planet. Inter., 265, 62–66. https://doi.org/10.1016/j.pepi.2017.02.004 doi: 10.1016/j.pepi.2017.02.004

GCMT. http://www.globalcmt.org/CMTsearch.html222

GeoNet. http://info.geonet.org.nz222

GeoNet Earthquake Catalogue. http://info.geonet.org.nz/display/appdata/Earthquake+Catalogue222

Gledhill, K., Ristau, J., Reyners, M., Fry, B., and Holden, C. (2011). The Darfield (Canterbury, New Zealand) Mw 7.1 earthquake of September 2010: A preliminary seismological report. Seismol. Res. Lett., 82, 378–386. https://doi.org/10.1785/gssrl.82.3.378 doi: 10.1785/gssrl.82.3.378

Grandin, R., Vallée, M., Satriano, C., Lacassin, R., Klinger, Y., Simoes, M., and Bollinger, L. (2015). Rupture process of the MW = 7.9 2015 Gorkha earthquake (Nepal): Insights into Himalayan megathrust segmentation. Geophys. Res. Lett., 42, 8373–8382. https://doi.org/10.1002/2015GL066044 doi: 10.1002/2015GL066044

GSI. http://www.gsi.go.jp/cais/topic161117-index-e.html222

Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C. R., Fielding, E., Litchfield, N., Villamor, P., Wallace, L., … Stirling, M. (2017). Complex multifault rupture during the 2016 MW7.8 Kaiköura earthquake, New Zealand. Science, 356, eaam7194. https://doi.org/10.1126/science.aam7194 doi: 10.1126/science.aam7194

Hartzell, S. H., and Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am., 73, 1553–1583.

Hollingsworth, J., Ye, L. L., and Avouac, J.-P. (2017). Dynamically triggered slip on a splay fault in the MW7.8, 2016 Kaikoura (New Zealand) earthquake. Geophys. Res. Lett., 44, 3517–3525. https://doi.org/10.1002/2016GL072228 doi: 10.1002/2016GL072228

Hsieh, M.-C., Zhao, L., Ji, C., and Ma, K.-F. (2016). Efficient inversions for earthquake slip distributions in 3D structures. Seismol. Res. Lett., 87, 1342–1354. https://doi.org/10.1785/0220160050 doi: 10.1785/0220160050

IRIS. http://www.iris.edu222

Ji, C., Helmberger, D. V., Wald, D. J., and Ma, K.-F. (2003). Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake. J. Geophys. Res., 108(B9), 2412. https://doi.org/10.1029/2002JB001764 doi: 10.1029/2002JB001764

Ji, C., Wald, D. J., and Helmberger, D. V. (2002). Source description of the 1999 Hector Mine, California earthquake, Part I: Wavelet domain inversion theory and resolution analysis. Bull. Seismol. Soc. Am., 92, 1192–1207. https://doi.org/10.1785/0120000916 doi: 10.1785/0120000916

Kennett, B. L. N., and Engdahl, E. R. (1991). Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105, 429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x doi: 10.1111/j.1365-246X.1991.tb06724.x

Kikuchi, M., H. and Kanamori, H. (1982). Inversion of complex body waves. Bull. Seismol. Soc. Am., 72, 491–506.

Langridge, R. M., Campbell, J., Hill, N. L., Pere, V., Pope, J., Pettinga, J., Estrada, B., and Berryman, K. R. (2003). Paleoseismology and slip rate of the Conway Segment of the Hope Fault at Greenburn Stream, South Island, New Zealand. Ann. Geophys., 46, 1119–1139. https://doi.org/10.4401/ag-3449 doi: 10.4401/ag-3449

Langridge, R. M., Villamor, P., Basili, R., Almond, P., Martinez-Diaz, J. J. and Canora, C. (2010). Revised slip rates for the Alpine fault at Inchbonnie: Implications for plate boundary kinematics of South Island, New Zealand. Lithosphere, 2, 139–152. https://doi.org/10.1130/L88.1 doi: 10.1130/L88.1

Litchfield, N. J., van Dissen, R., Sutherland, R., Barnes, P. M., Cox, S. C., Norris, R., Beavan, R. J., Langridge, R., Villamor, P., … Clark, K. (2014). A model of active faulting in New Zealand. New Zealand. J. Geol. Geophys., 57, 32–56. https://doi.org/10.1080/00288306.2013.854256 doi: 10.1080/00288306.2013.854256

Little, T. A., and Jones, A. (1998). Seven million years of strike-slip and related off-fault deformation, northeastern Marlborough fault system, South Island, New Zealand. Tectonics, 17, 285–302. https://doi.org/10.1029/97TC03148 doi: 10.1029/97TC03148

Liu, P. C., and Archuleta, R. J. (2004). A new nonlinear finite fault inversion with three-dimensional Green’s functions: Application to the 1989 Loma Prieta, California, earthquake. J. Geophys. Res., 109, B02318. https://doi.org/10.1029/2003JB002625 doi: 10.1029/2003JB002625

Minson, S. E., Simons, M., and Beck, J. L. (2013). Bayesian inversion for finite fault earthquake source models I-theory and algorithm. Geophys. J. Int., 194, 1701–1726. https://doi.org/10.1093/gji/ggt180 doi: 10.1093/gji/ggt180

Nicol, A., and van Disson, R. 2002. Up-dip partitioning of displacement components on the oblique-dip Clarence Fault, New Zealand. J. Structural Geol., 24, 1521–1535. https://doi.org/10.1016/S0191-8141(01)00141-9 doi: 10.1016/S0191-8141(01)00141-9

NIWA. https://niwa.co.nz/news/scientists-detect-hugefault-rupture-offshore-from-kaikoura222

Olson, A. H., and Apsel, R. J. (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bull. Seismol. Soc. Am., 72, 1969–2001.

Piatanesi, A., Cirella, A., Spudich, P., and Cocco, M. (2007). A global search inversion for earthquake kinematic rupture history: Application to the 2000 western Tottori, Japan earthquake. J. Geophys. Res., 112, B07314. https://doi.org/10.1029/2006JB004821 doi: 10.1029/2006JB004821

Power, W., Clark, K., King, D. N., Borrero, J., Howarth, J., Lane, E. M., Goring, D., Goff, J., Chagué-Goff, C., … Benson, A. (2017). Tsunami runup and tide-gauge observations from the 14 November 2016 M7.8 Kaiköura earthquake, New Zealand. Pure Appl. Geophys., 174, 2457–2473. https://doi.org/10.1007/s00024-017-1566-2 doi: 10.1007/s00024-017-1566-2

Shi, X. H., Wang, Y., Liu-Zeng, J., Weldon, R., Wei, S. J., Wang, T., and Sieh, K. (2017). How complex is the 2016 Mw 7.8 Kaikoura earthquake, South Island, New Zealand?. Sci. Bull., 62, 309–311. https://doi.org/10.1016/j.scib.2017.01.033 doi: 10.1016/j.scib.2017.01.033

USGS. https://earthquake.usgs.gov/earthquakes/eventpage/us1000778i#executive222

USGS Significant Earthquakes Archive. https://earthquake.usgs.gov/earthquakes/browse/significant.php222

Wang, T., Wei, S. J., Shi, X. H., Qiu, Q., Li, L. L., Peng, D. J., Weldon, R. J., and Barbot, S. (2018). The 2016 Kaiköura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth Planet. Sci. Lett., 482, 44–51. https://doi.org/10.1016/j.jpgl.2017.10.056 doi: 10.1016/j.jpgl.2017.10.056

Wessel, P., and Smith, W. (1998). New, improved version of the Generic Mapping Tools released. Eos. Trans. AGU, 79, 579. https://doi.org/10.1029/98EO00426 doi: 10.1029/98EO00426

Wikipedia. https://en.wikipedia.org/wiki/2016_Kaikoura_earthquake.222

Yue, H., Simons, M., Duputel, Z., Jiang, J. L., Fielding, E., Liang, C., Owen, S., Moore, A., Riel, B., … Samsonov, S. V. 2016. Depth varying rupture properties during the 2015 Mw7.8 Gorkha (Nepal) earthquake. Tectonophysics, 714–715, 44–54. https://doi.org/10.1016/j.tecto.2016.07.005 doi: 10.1016/j.tecto.2016.07.005

Zhang, H., Koper, K. D., Pankow, K., and Ge, Z. X. (2017). Imaging the 2016 Mw 7.8 Kaikoura, New Zealand, earthquake with teleseismic P waves: A cascading rupture across multiple faults. Geophys. Res. Lett., 44, 4790–4798. https://doi.org/10.1002/2017GL073461 doi: 10.1002/2017GL073461

Zhao, L., Chen, P., and Jordan, T. H. (2006). Strain Green's tensors, reciprocity, and their applications to seismic source and structure studies. Bull. Seismol. Soc. Am., 96, 1753–1763. https://doi.org/10.1785/0120050253 doi: 10.1785/0120050253

[1]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[2]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[3]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[4]

YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015

[5]

XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009

[6]

LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016

[7]

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

[8]

WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008

[9]

WeiMin Wang, JinLai Hao, ZhenXing Yao, 2018: Preliminary results for the rupture process of Jan. 10, 2018, Mw7.6 earthquake at east of Great Swan Island, Honduras, Earth and Planetary Physics, 2, 86-87. doi: 10.26464/epp2018010

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung