Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Evidence supporting New Geophysics. http://doi.org/10.26464/epp2018018

2018, 2(3): 173-188. doi: 10.26464/epp2018018

SOLID EARTH

Evidence supporting New Geophysics

1. 

British Geological Survey, The Lyell Centre, Edinburgh EH14 4AP, Scotland UK

2. 

School of GeoSciences, University of Edinburgh EH9 3FW, Scotland UK

3. 

Institute of Earthquake Forecasting, China Earthquake Administration, 100036 Beijing, China

Corresponding author: Yuan Gao, qzgyseis@163.com

Received Date: 2018-03-12
Web Publishing Date: 2018-05-12

In the last decade a New Geophysics has been proposed, whereby the crust and uppermost ~400 km of the mantle of the Earth are so pervaded by closely-spaced stress-aligned microcracks (intergranular films of hydrated melt in the mantle) that in situ rocks verge on failure by fracturing, and hence are critical-systems that impose a range of fundamentally-new properties on conventional sub-critical geophysics. Enough of these new properties have been observed to confirm that New Geophysics is a new understanding of fluid/rock deformation with important implications and applications. Evidence supporting New Geophysics has been published in a wide variety of publications. Here, for clarification, we summarise in one document the evidence supporting New Geophysics.

Key words: earthquakes, eruptions, microcracks, New Geophysics, shear-wave splitting, stress-forecasting

Alford, R. M. (1986). Shear data in the presence of azimuthal anisotropy: Dilley, Texas. In Proceedings of the 56th Ann. Int. Mtg (pp. 476–379). Houston: SEG. https://doi.org/10.1190/1.1893036

Allmann, B. P., and Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. J. Geophys. Res., 114(B1), B01310. https://doi.org/10.1029/2008JB005821

Angerer, E., Crampin, S., Li, X. Y., and Davis, T. L. (2002). Processing, modelling and predicting time-lapse effects of overpressured fluid-injection in a fractured reservoir. Geophys. J. Int., 149(2), 267–280. https://doi.org/10.1046/j.1365-246X.2002.01607.x

Bak, P. (1996). How Nature Works: the Science of Self-Organized Criticality. New York: Springer-Verlag.

Baltay, A., Ide, S., Prieto, G., and Beroza, G. (2011). Variability in earthquake stress drop and apparent stress. Geophys. Res. Lett., 38(6), L06303. https://doi.org/10.1029/2011GL046698.

Booth, D. C., and Crampin, S. (1985). Shear-wave polarizations on a curved wavefront at an isotropic free-surface. Geophys. J. R. Astron. Soc., 83, 31–45.

Booth, D. C., Crampin, S., Lovell, J. H., and Chiu, J. M. (1990). Temporal changes in shear wave splitting during an earthquake swarm in Arkansas. J. Geophys. Res., 95(B7), 11151–11164. https://doi.org/10.1029/JB095iB07p11151

Crampin, S. (1970). The dispersion of surface waves in multilayered anisotropic media. Geophys. J. R. Astron. Soc., 21(3), 387–402. https://doi.org/10.1111/j.1365-246X.1970.tb01799.x

Crampin, S., and King, D. W. (1977). Evidence for anisotropy in the upper mantle beneath Eurasia from the polarization of higher mode seismic surface waves. Geophys. J. R. Astron. Soc., 49(1), 59–85. https://doi.org/10.1111/j.1365-246X.1977.tb03701.x

Crampin, S. (1981). A review of wave motion in anisotropic and cracked elastic-media. Wave Motion, 3(4), 343–391. https://doi.org/10.1016/0165-2125(81)90026-3

Crampin, S., and Kirkwood, S. C. (1981). Velocity variations in systems of anisotropic symmetry. J. Geophys., 49, 35–42.

Crampin, S., Booth, D. C., Evans, R., Peacock, S., and Fletcher, J. B. (1990). Changes in shear wave splitting at Anza near the time of the North Palm Springs Earthquake. J. Geophys. Res., 95(B7), 11197–11212. https://doi.org/10.1029/JB095iB07p11197

Crampin, S., Booth, D. C., Evans, R., Peacock, S., and Fletcher, J. B. (1991). Comment on "Quantitative measurements of shear wave polarizations at the anza seismic network, Southern California: implications for shear wave splitting and earthquake prediction" by Richard C. Aster, Peter M. Shearer, and Jon Berger. J. Geophys. Res., 96(B4), 6403–6414. https://doi.org/10.1029/90JB02453

Crampin, S. (1994). The fracture criticality of crustal rocks. Geophys. J. Int., 118(2), 428–438. https://doi.org/10.1111/j.1365-246X.1994.tb03974.x

Crampin, S., Zatsepin, S. V., Slater, C., and Brodov, L. Y. (1996). Abnormal shear wave polarizations as indicators of high pressures and over pressures. In Proceedings of the 58th Conference European Association of Geophysicists and Engineers. Amsterdam: EAGE.

Crampin, S., and Zatsepin, S. V. (1997). Modelling the compliance of crustal rock-Ⅱ. Response to temporal changes before earthquakes. Geophys. J. Int., 129(3), 495–506. https://doi.org/10.1111/j.1365-246X.1997.tb04489.x

Crampin, S. (1999). Calculable fluid-rock interactions. J. Geol. Soc., 156(3), 501–514. https://doi.org/10.1144/gsjgs.156.3.0501

Crampin, S., Volti, T., and Stefánsson, R. (1999). A successfully stress-forecast earthquake. Geophys. J. Int., 138, F1–F5.

Crampin, S., Volti, T., Chastin, S., Gudmundsson, A., and Stefánsson, R. (2002). Indication of high pore-fluid pressures in a seismically-active fault zone. Geophys. J. Int., 151(2), F1–F5. https://doi.org/10.1046/j.1365-246X.2002.01830.x

Crampin, S. (2003). Aligned cracks not LPO as the cause of mantle anisotropy. In EGS-AGU-EUG Joint Assembly, Nice. Nice, France: AGU.

Crampin, S., Chastin, S., and Gao, Y. (2003). Shear-wave splitting in a critical crust: ⅡI. Preliminary report of multi-variable measurements in active tectonics. J. Appl. Geophys., 54(3-4), 265–277. https://doi.org/10.1016/j.jappgeo.2003.01.001

Crampin, S. (2004). The New Geophysics: implications for hydrocarbon recovery and possible contamination of time-lapse seismics. First Break, 22(6), 73–82. https://doi.org/10.3997/1365-2397.2004010

Crampin, S., Peacock, S., Gao, Y., and Chastin. S. (2004a). The scatter of time-delays in shear-wave splitting above small earthquakes. Geophys. J. Int., 156(1), 39–44. https://doi.org/10.1111/j.1365-246X.2004.02040.x

Crampin, S., Volti, T., and Stefánsson, R. (2004b). Response to ‘A statistical evaluation of a ‘stress-forecast’ earthquake’ by T. Seher & I. G. Main. Geophys. J. Int., 157(1), 194–199. https://doi.org/10.1111/j.1365-246X.2004.02187.x

Crampin, S., and Gao, Y. (2005). Comment on "Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan, earthquake: shallow crustal anisotropy and lack of precursory changes, by Yungfeng Liu, Ta-Liang Teng, and Yehuda Ben-Zion”. Bull. Seismol. Soc. Am., 95(1), 354–360. https://doi.org/10.1785/0120040092

Crampin, S., and Peacock, S. (2005). A review of shear-wave splitting in the compliant crack-critical anisotropic Earth. Wave Motion, 41(1), 59–77. https://doi.org/10.1016/j.wavemoti.2004.05.006

Crampin, S. (2006). The New Geophysics: a new understanding of fluid-rock deformation. In Van Cotthem, A., et al. (Eds.), Eurock 2006: Multiphysics Coupling and Long Term Behaviour in Rock Mechanics (pp. 539–544). London: Taylor and Francis.

Crampin, S., and Peacock, S. (2008). A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Wave Motion, 45(6), 675–722. https://doi.org/10.1016/j.wavemoti.2008.01.003

Crampin, S., Gao, Y., and Peacock, S. (2008). Stress-forecasting (not predicting) earthquakes: A paradigm shift?. Geology, 36(5), 427–430. https://doi.org/10.1130/G24643A.1

Crampin, S. (2011). A second opinion on " Operational earthquake forecasting: some thoughts on why and how,” by Thomas H. Jordan and Lucile M. Jones. Seismol. Res. Lett., 82(2), 227–230. https://doi.org/10.1785/gssrl.82.2.227

Crampin, S. (2012). Misunderstandings in comments and replies about the ICEF Report.

Crampin, S., and Gao, Y. (2012). Plate-wide deformation before the Sumatra-Andaman Earthquake. J. Asian Earth Sci., 46, 61–69. https://doi.org/10.1016/j.jseaes.2011.10.015

Crampin, S., and Gao, Y. (2013). The new geophysics. Terra Nova, 25(3), 173–180. https://doi.org/10.1111/ter.12030

Crampin, S., Gao, Y., and De Santis, A. (2013). A few earthquake conundrums resolved. J. Asian Earth Sci., 62, 501–509. https://doi.org/10.1016/j.jseaes.2012.10.036.

Crampin, S., and Gao, Y. (2015). The physics underlying Gutenberg-Richter in the Earth and in the Moon. J. Earth Sci., 26(1), 134–139. https://doi.org/10.1007/s12583-015-0513-3

Crampin, S., Gao, Y., and Bukits, J. (2015). A review of retrospective stress-forecasts of earthquakes and eruptions. Phys. Earth Planet. Inter., 245, 76–87. https://doi.org/10.1016/j.pepi.2015.05.008

Davies, P. (1989a). The new physics: a synthesis. In Davies, P. (Ed.), The New Physics (pp. 1–6). Cambridge: Cambridge University Press.

Davies, P. (1989b). The New Physics. Cambridge: Cambridge University Press.

Gao, Y., Zheng, S. H., and Sun, Y. (1995). Crack-induced anisotropy in the crust from shear wave splitting observed in Tangshan region, North China. Acta Seismol. Sinica, 8(3), 351–363. https://doi.org/10.1007/BF02650563

Gao, Y. Wang, P. D., Zheng, S. H., Wang, M., Chen, Y. T., and Zhou, H. L. (1998). Temporal changes in shear-wave splitting at an isolated swarm of small earthquakes in 1992 near Dongfang, Hainan Island, Southern China. Geophys. J. Int., 135(1), 102–112. https://doi.org/10.1046/j.1365-246X.1998.00606.x

Gao, Y., and Crampin, S. (2003). Temporal variations of shear-wave splitting in field and laboratory studies in China. J. Appl. Geophys., 54(3-4), 279–287. https://doi.org/10.1016/j.jappgeo.2003.01.002

Gao, Y., and Crampin, S. (2004). Observations of stress relaxation before earthquakes. Geophys. J. Int., 157(2), 578–582. https://doi.org/10.1111/j.1365-246X.2004.02207.x

Gao, Y., and Crampin, S. (2006). A stress-forecast earthquake (with hindsight), where migration of source earthquakes causes anomalies in shear-wave polarisations. Tectonophysics, 426(3-4), 253–262. https://doi.org/10.1016/j.tecto.2006.07.013

Gao, Y., and Crampin, S. (2008). Shear-wave splitting and earthquake forecasting. Terra Nova, 20(6), 440–448. https://doi.org/10.1111/j.1365-3121.2008.00836.x

Gao, Y., Wu, J., Yi, G. X., and Shi, Y. T. (2010). Crust-mantle coupling in North China: preliminary analysis from seismic anisotropy. Chin. Sci. Bull., 55(31), 3599–3605. https://doi.org/10.1007/s11434-010-4135-y

Gao, Y., Wu, J., Fukao, Y., Shi, Y. T., and Zhu, A. L. (2011). Shear wave splitting in the crust in North China: stress, faults and tectonic implications. Geophys. J. Int., 187(2), 642–654. https://doi.org/10.1111/j.1365-246X.2011.05200.x

Geller, R. J. (1997). Earthquake Prediction: a critical review. Geophys. J. Int., 131(3), 425–450. https://doi.org/10.1111/j.1365-246X.1997.tb06588.x

Geller, R. J., Jackson, D. D., Kagan, Y. Y., Mulargia, F. (1997). Earthquakes cannot be predicted. Science, 275(5306), 1616–1617. https://doi.org/10.1126/science.275.5306.1616

Gerst, A., and Savage, M. K. (2004). Seismic anisotropy beneath Ruapehu volcano: a possible eruption forecasting tool. Science, 306(5701), 1543–1547. https://doi.org/10.1126/science.1103445

Gudmundsson, M. T., Hoskuldsson, A., Larsen, G., Thordarson, T., Oddsson, B., Hognadottir, T., Jonsdottir, I., Bjornsson, H., Petersen, N. G., and Magnusson, E. (2011). Eyjafjallajökull April-June 2010: An explosive-mixed eruption of unusually long duration. In EGU General Assembly. Vienna, Austria: EGU.

Gutenberg, B., and Richter, C. F. (1956). Magnitude and energy of earthquakes. Ann. Geofis., 9, 1–15.

Helbig, K., and Thomsen, L. (2005). 75-plus years of anisotropy in exploration and reservoir seismics: A historical review of concepts and methods. Geophysics, 70(6), 9ND-23ND. https://doi.org/10.1190/1.2122407

Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophys. J. R. Astron. Soc., 64(1), 133–150. https://doi.org/10.1111/j.1365-246X.1981.tb02662.x

Jensen H. J. (1998). Self-Organized Criticality. Cambridge: Cambridge University Press.

Jordan, T. H., and Jones, L. M. (2011). Reply to ‘A second opinion on " Operational earthquake forecasting: some thoughts on why and how,” by Thomas H. Jordan and Lucile M. Jones,’ by Stuart Crampin. Seismol. Res. Lett., 82(2), 231–232. https://doi.org/10.1785/gssrl.82.2.231

Jordan, T. H., Chen, Y. T., Gasparini, P., Madariaga, R., Main, I., Marzocchi, W., Papadopoulos, G., Sobolev, G., Yamaoka, K., and Zschau, J. (2012). Reply to " Comment on ‘Operational earthquake forecasting: Status of knowledge and guidelines for implementation by Jordan et al.’ by Stuart Crampin”. Ann. Geophys., 55(1), 13–15. https://doi.org/10.4401/ag-5690

Kossobokov, V. G. (2013). Earthquake prediction: 20 years of global experiment. Nat. Haz., 69(2), 1157–1177. https://doi.org/10.1007/s11069-012-0198-1

Leary, P. (1991). Deep borehole log evidence for fractal distribution of fractures in crystalline rock. Geophys. J. Int., 107(3), 615–627. https://doi.org/10.1111/j.1365-246X.1991.tb01421.x

Liu, S., Crampin, S., Luckett, R., and Yang, J. S. (2014). Changes in shear wave splitting before the 2010 Eyjafjallajökull eruption in Iceland. Geophys. J. Int., 199(1), 102–112. https://doi.org/10.1093/gji/ggu202

Liu, Y., Crampin, S., and Main, I. (1997). Shear-wave anisotropy: spatial and temporal variations in time delays at Parkfield, Central California. Geophys. J. Int., 130(3), 771–785. https://doi.org/10.1111/j.1365-246X.1997.tb01872.x

Lorenz, E. N. (1972). Predictability: does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?. In Proceedings of the 139th Annual Meeting of the American Association for the Advancement of Science. Cambridge: Massachusetts Institute of Technology.

Peacock, S., Crampin, S., Booth, D. C., and Fletcher, J. B. (1988). Shear wave splitting in the Anza seismic gap, Southern California: temporal variations as possible precursors. J. Geophys. Res., 93(B4), 3339–3356. https://doi.org/10.1029/JB093iB04p03339

Roche, S. L., Davis, T. L., and Benson, R. D. (1997). 4-D, 3-C seismic study at Vacuum field, New Mexico. In 1997 SEG Annual Meeting (pp. 886–889). Dallas, Texas: SEG.

Savage, H. M., and Brodsky, E. E. (2011). Collateral damage: evolution with displacement of fracture distribution and secondary fault strands in fault damage zones. J. Geophys. Res., 116(B3), B03405. https://doi.org/10.1029/2010JB007665

Savage, M. K. (1999). Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?. Rev. Geophys., 37(1), 65–106. https://doi.org/10.1029/98RG02075

Shao, Y. P., Gao, Y., Dai, S. G., Du, Y., and Song, C. (2017). Seismic shear-wave splitting characteristics in the crust in the area of Jinping reservoir of Sichuan and influences from water impoundment. Chin. J. Geophys. (in Chinese), 60(12), 4557–4568. https://doi.org/10.6038/cjg20171203

Shi, Y. T., Gao, Y., Zhao, C. P., Yao, Z. X., and Zhang, Y. J. (2009). A study of seismic anisotropy of Wenchuan earthquake sequence. Chin. J. Geophys., 52(1), 138–147. https://doi.org/10.1002/cjg2.1335

Silver, P. G. (1996). Seismic anisotropy beneath the continents: probing the depths of geology. Ann. Rev. Earth Planet. Sci., 24, 385–432. https://doi.org/10.1146/annurev.earth.24.1.385

Tai, L. X., Gao, Y., Cao, F. J., Wu, J., Shi, Y. T., and Jiao, M. R. (2008). Shear-wave splitting beforeand after the 1999 Xiuyan earthquake in Liaoning, China. Acta Seismol. Sinica, 21(4), 344–357. https://doi.org/10.1007/s11589-008-0344-8

Teanby, N. A., Kendall, J. M., Jones, R. H., and Barkved, O. (2004). Stress-induced temporal variations in seismic anisotropy observed in microseismic data. Geophys. J. Int., 156(3), 459–466. https://doi.org/10.1111/j.1365-246X.2004.02212.x

Volti, T., and Crampin, S. (2003). A four-year study of shear-wave splitting in Iceland: 2. Temporal changes before earthquakes and volcanic eruptions. In Nieuwland, D. A. (Ed.), New Insights into Structural Interpretation and Modelling (pp. 135–149). Geological Society, London, Special Publication.

Walter, L. A., Leary, P. C., and Crampin, S. (2003). Physical model for downhole orbital vibrator (DOV) – (2) borehole seismic radiation. In Proceedings of the 73rd Ann. Int. Mtg (pp. 1536–1539). Dallas, Texas: SEG. https://doi.org/10.1190/1.1817795

Wu, J., Crampin, S., Gao, Y., Hao, P., Volti, T., and Chen, Y. T. (2006). Smaller source earthquakes and improved measuring techniques allow the largest earthquakes in Iceland to be stress forecast (with hindsight). Geophys. J. Int., 166(3), 1293–1298. https://doi.org/10.1111/j.1365-246X.2006.03054.x

Zatsepin, S. V., and Crampin, S. (1997). Modelling the compliance of crustal rock-I. Response of shear-wave splitting to differential stress. Geophys. J. Int., 129(3), 477–494. https://doi.org/10.1111/j.1365-246X.1997.tb04488.x

Zhao, B., Shi, Y. T., and Gao, Y. (2012). Seismic relocation, focal mechanism and crustal seismic anisotropy associated with the 2010 Yushu MS7.1 earthquake and its aftershocks. Earthq. Sci., 25(1), 111–119. https://doi.org/10.1007/s11589-012-0837-3

[1]

JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024

[2]

HongFeng Yang, XiaoWei Chen, Rebecca Harrington, YaJing Liu, 2021: Preface to the special collection of Induced Earthquakes, Earth and Planetary Physics, 5, 483-484. doi: 10.26464/epp2021057

[3]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[4]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

[5]

YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038

[6]

Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044

[7]

Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054

[8]

Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055

[9]

Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li, 2021: Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin, Earth and Planetary Physics, 5, 532-546. doi: 10.26464/epp2021026

[10]

XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052

[11]

Xiao-Dong Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, Y. Futaana, 2022: Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications, Earth and Planetary Physics, 6, 42-51. doi: 10.26464/epp2022003

[12]

TianYu Zheng, YuMei He, Yue Zhu, 2022: A new approach for inversion of receiver function for crustal structure in the depth domain, Earth and Planetary Physics, 6, 83-95. doi: 10.26464/epp2022008

[13]

BinBin Liao, XiaoDong Chen, JianQiao Xu, JiangCun Zhou, HePing Sun, 2022: Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method, Earth and Planetary Physics, 6, 241-247. doi: 10.26464/epp2022025

[14]

Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014

[15]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[16]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

[17]

SiYu Miao, HaiJiang Zhang, YuYang Tan, Ye Lin, 2021: Development of a new high resolution waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics, 5, 520-531. doi: 10.26464/epp2021056

[18]

Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li, 2021: A new inversion method for reconstruction of plasmaspheric He+ density from EUV images, Earth and Planetary Physics, 5, 218-222. doi: 10.26464/epp2021020

[19]

KaiHua Xu, Fei He, Yong Wei, Ross N. Mitchell, Si Chen, YuQi Wang, ZhaoJin Rong, 2022: A new inclination-based method to evaluate the global geomagnetic configuration and axial dipole moment, Earth and Planetary Physics, 6, 359-365. doi: 10.26464/epp2022030

[20]

ChengWei Yang, ChengHu Wang, GuiYun Gao, Pu Wang, 2022: Cretaceous–Cenozoic regional stress field evolution from borehole imaging in the southern Jinzhou area, western Liaoning, North China Craton, Earth and Planetary Physics, 6, 123-134. doi: 10.26464/epp2022001

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Evidence supporting New Geophysics

Stuart Crampin, Yuan Gao