Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488.

2018, 2(6): 479-488. doi: 10.26464/epp2018046


The Langmuir Probe onboard CSES: data inversion analysis method and first results


The Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China


National Space Science Center, China Earthquake Administration, Beijing 100190, China


The Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China

Corresponding author: Rui Yan,

Received Date: 2018-08-18
Web Publishing Date: 2018-11-05

The Langmuir Probe (LAP), onboard the China Seismo-Electromagnetic Satellite (CSES), has been designed for in situ measurements of bulk parameters of the ionosphere plasma, the first Chinese application of in-situ measurement technology in the field of space exploration. The two main parameters measured by LAP are electron density and temperature. In this paper, a brief description of the LAP and its work mode are provided. Based on characteristics of the LAP, and assuming an ideal plasma environment, we introduce in detail a method used to invert the I-V curve; the data products that can be accessed by users are shown. Based on the LAP data available, this paper reports that events such as earthquakes and magnetic storms are preceded and followed by obvious abnormal changes. We suggest that LAP could provide a valuable data set for studies of space weather, seismic events, and the ionospheric environment.

Key words: Langmuir Probe (LAP), Current-Voltage (I-V) curve, electron density (Ne), electron temperature (Te)

Balan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., Yamamoto, M., and Bailey, G. J. (2010). A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophys. Res., 115(A2), A02304.

Bering, E. A., Kelley, M. C., Mozer, F. S., and Fahleson, U. V. (1973). Theory and operation of the split Langmuir Probe. Planet. Space Sci., 21(11), 1983–2001.

Brace, L. H., Carignan, G. R., Findlay, J. A. (1971). Evaluation of ionospheric electron temperature measurements by cylindrical probes. Space Res., 11, 1079–1105

Buonsanto, M. J. (1999). Ionospheric storms—a review. Space Sci. Rev., 88(3-4), 563–601.

Chen, F. F., and Chang, J. P. (2002). Principles of Plasma Processing (pp. 2–8). New York: Plenum/Kluwer Publishers.

Eriksson, A. I., Boström, R., Gill, R., Åhlén, L., Jansson, S. E., Wahlund, J. E., André, M., Mälkki, A., Holtet, J. A., … The LAP Team. (2007). RPC-LAP: The Rosetta Langmuir Probe Instrument. Space Sci. Rev., 128(1-4), 729–744.

Godyak, V. A., and Alexandrovich, B. M. (2015). Comparative analyses of plasma probe diagnostics techniques. J. Appl. Phys., 118(23), 233302.

Guan, Y. B., Wang, S. J., Liu, C., and Feng, Y. B. (2011). The design of the Langmuir probe onboard a seismo-electromagnetic satellite. In Proceedings of SPIE 8196, International Symposium on Photoelectronic Detection and Imaging 2011: Space Exploration Technologies and Applications. Beijing: SPIE.

He, Y., Yang, D. M., Zhu, R., Qian, J. D., and Parrot, M. (2010). Variations of electron density and temperature in ionosphere based on the DEMETER ISL data. Earthq. Sci., 23(4), 349–355.

He, Y., Yang, D., Qian, J., and Parrot, M. (2011). Response of the ionospheric electron density to different types of seismic events. Nat. Hazards Earth Syst. Sci., 11(8), 2173–2180.

Holback, B., Jacksén, Å., Åhlén, L., Jansson, S. E., Eriksson, A. I., Wahlund, J. E., Carozzi, T., and Bergman, J. (2001). LINDA-the Astrid-2 Langmuir probe instrument. Ann. Geophys., 19(6), 601–610.

Hutchinson, I. H. (1987). Principles of Plasma Diagnostics (pp. 55–66). New York: Cambridge University Press.

Langmuir, I., and Mott-Smith, H. M. (1924). Studies of electric discharges in gases at low pressures. Gen. Electr. Rev., 27(7), 449–455

Langmuir, I. (1932). Electric discharges in gases at low pressures. J. Franklin Inst., 214(3), 275–298.

Lebreton, J. P., Stverak, S., Travnicek, P., Maksimovic, M., Klinge, D., Merikallio, S., Lagoutte, D., Poirier, B., Blelly, P. L., … Salaquarda, M. (2006). The ISL Langmuir probe experiment processing onboard DEMETER: Scientific objectives, description and first results. Planet. Space Sci., 54(5), 472–486.

Li, M., and Parrot, M. (2012). " Real time analysis” of the ion density measured by the satellite DEMETER in relation with the seismic activity. Nat. Hazards Earth Syst. Sci., 12(9), 2957–2963.

Liu, C., Guan, Y. B., Zhang, A. B., Zheng, X. Z., and Sun, Y. Q. (2016). The ionosphere measurement technology of Langmuir probe on China seismo-electromagnetic satellite. Acta Phys. Sin.(in Chinese) , 65(18), 189401.

Liu, C., Guan, Y. B., Zheng, X. Z., Zhang, A. B., Piero, D., and Sun, Y. Q. (2018). The technology of space plasma in-situ measurement on the China Seismo-Electromagnetic Satellite. Science China.

Liu, J., Wan, W. X., Huang, J. P., Zhang, X. M., Zhao, S. F., Ouyang, X. Y., and Zeren, Z. M. (2011). Electron density perturbation before Chile M8.8 earthquake. Chinese J. Geophys.(in Chinese) , 54(11), 2717–2725.

Liu, J. (2013). Ionopheric perturbance study before earthquakes [Ph. D. thesis] (in Chinese). Beijing: University of Chinese Academy of Sciences.

Liu, J., Huang, J. P., and Zhang, X. M. (2014). Ionospheric perturbations in plasma parameters before global strong earthquakes. Adv. Space Res., 53(5), 776–787.

Mott-Smith, H. M. (1961). The theory of collectors in gaseous discharges. In Suits, C. G. (Ed.), Electrical Discharge (pp. 99–132). Amsterdam: Elsevier.

Parrot, M. (2012). Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity. Ann. Geophys., 55(1), 149–155.

Píša, D., Parrot, M., and Santolík, O. (2011). Ionospheric density variations recorded before the 2010 M w 8.8 earthquake in Chile. J. Geophys. Res., 116(A8), A08309.

Priyadarshi, S., Kumar, S., and Singh, A. K. (2011). Ionospheric perturbations associated with two recent major earthquakes (M > 5.0). Phys. Scr., 84(4), 045901.

Pulinets, S. A., Ouzounov, D. P., Karelin, A. V., and Davidenko, D. V. (2015). Physical bases of the generation of short-term earthquake precursors: A complex model of ionization-induced geophysical processes in the lithosphere-atmosphere-ionosphere-magnetosphere system. Geomagn. Aeron., 55(4), 521–538.

Sarkar, S., Gwal, A. K., and Parrot, M. (2007). Ionospheric variations observed by the DEMETER satellite in the mid-latitude region during strong earthquakes. J. Atmos. Solar -Terr. Phys., 69(13), 1524–1540.

Sarkar, S., Choudhary, S., Sonakia, A., Vishwakarma, A., and Gwal, A. K. (2012). Ionospheric anomalies associated with the Haiti earthquake of 12 January 2010 observed by DEMETER satellite. Nat. Hazards Earth Syst. Sci., 12(3), 671–678.

Shen, X. H., Zhang, X. M., Yuan, S. G., Wang, L. W., Cao, J. B., Huang, J. P., Zhu, X. H., Piergiorgio, P., and Dai, J. P. (2018). The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci., 61(5), 634–642.

Szuszczewicz, E. P. (1972). Area influences and floating potentials in Langmuir probe measurements. Journal of Applied Physics, 43(3), 874–880.

Yan, R., Parrot, M., and Pinçon, J. L. (2017a). Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. J. Geophys. Res.:Space Phys., 122(12), 12421–12429.

Yan, R., Hu, Z., Wang, L. W., Guan, Y. B., and Liu, C. (2017b). Preliminary data inversion method of Langmuir probe onboard CSES. Acta Seismol. Sin.(in Chinese) , 39(2), 239–247.

Yao, Y. B., Chen, P., Zhang, S., and Chen, J. J. (2013). Temporal and spatial variations in ionospheric electron density profiles over South Africa during strong magnetic storms. Nat. Hazards Earth Syst. Sci., 13(2), 375–384.

Zhang, X. M., Shen, X. H., Liu, J., Ouyang, X. Y., Qian, J. D., and Zhao, S. F. (2010a). Ionospheric perturbations of electron density before the Wenchuan Earthquake. Int. J. Remote Sens., 31(13), 3559–3569.

Zhang, X. M., Liu, J., Shen, X. H., Parrot, M., Qian, J. D., Ouyang, X. Y., Zhao, S. F., and Huang, J. P. (2010b). Ionospheric perturbations associated with the M8.6 Sumatra earthquake on 28 March 2005. Chinese J. Geophys.(in Chinese) , 53(3), 567–575.

Zhao, G. Z., Chen, X. B., and Cai, J. T. (2007). Electromagnetic observation by satellite and earthquake prediction. Prog. Geophys.(in Chinese) , 22(3), 667–673.


MoRan Liu, Chen Zhou, Ting Feng, 2023: Electron acceleration by Langmuir turbulence in ionospheric heating, Earth and Planetary Physics. doi: 10.26464/epp2023001


QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036


ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049


ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035


Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051


YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052


YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037


Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002


ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033


HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053


Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052


YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003


Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060


ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037


ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, JiChun Zhang, 2022: The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study, Earth and Planetary Physics, 6, 149-160. doi: 10.26464/epp2022012


LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

The Langmuir Probe onboard CSES: data inversion analysis method and first results

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu