Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16.

2019, 3(1): 8-16. doi: 10.26464/epp2019002


Magnetosphere response to the IMF turning from north to south


Institute of Space Weather, School of Math & Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China


Beijing Institute of Applied Meteorology, Beijing 100029, China


School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China

Corresponding author: JianYong Lu,

Received Date: 2018-10-01
Web Publishing Date: 2018-12-28

In this paper, the Space Weather Modeling Framework (SWMF) is used to simulate the real-time response of the magnetosphere to a solar wind event on June 5, 1998, in which the interplanetary magnetic field shifted its direction from north to south. Since most current models do not take into account convective effects of the inner magnetosphere, we first study the importance of Rice Convection Model (RCM) in the global model. We then focus on the following four aspects of the magnetosphere’s response: the magnetosphere’s density distribution, the structure of its magnetic field lines, the area of the polar cap boundary, and the corresponding ionospheric current change. We find that (1) when the IMF changes from north to south in this event, high magnetosheath density is observed to flow downstream along the magnetopause with the solar wind; low-latitude reconnection at dayside occurs under the southward IMF, while the magnetic field lines in the tail lobe caudal, caused by the nightside high latitude reconnection, extend into the interplanetary space. Open magnetic field lines exist simultaneously at both high and low latitudes at the magnetopause; (2) the area of the polar cap is obviously increased if the IMF turns from the north to the south; this observation is highly consistent with empirical observations; (3) the ionospheric field align current in the northern hemisphere is stronger than in the southern hemisphere and also increases as the IMF changes from north to south. SWMF with the Rice Convection effect provides reliable modeling of the magnetospheric and ionospheric response to this solar wind variation.

Key words: magnetosphere, global MHD simulation, polar cap, magnetic reconnection

De Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., and Tóth, G. (2004). Coupling of a global MHD code and an inner magnetospheric model: Initial results. J. Geophys. Res., 109(A12), A12219.

Evans, L. C., and Stone, E. C. (1972). Electron polar cap and the boundary of open geomagnetic field lines. J. Geophys. Res., 77(28), 5580–5584.

Fedder, J. A., and Lyon, J. G. (1995). The Earth’s magnetosphere is 165 RE long: Self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field. J. Geophys. Res., 100(A3), 3623–3635.

Feldman, W. C., Hones, E. W., Barraclough, B. L., Reeves, G. D., Belian, R. D., Cayton, T. E., Lee, P., Lepping, R. P., Trombka, J. I., …Rich, F. J. (1995). Possible conjugate reconnection at the high-latitude magnetopause. J. Geophys. Res., 100(A8), 14913–14923.

García, K. S., and Hughes W. J. (2007). Finding the Lyon-Fedder-Mobarry magnetopause: A statistical perspective. J. Geophys. Res., 112(A6).

Gombosi, T. I., DeZeeuw, D. L., Groth, C. P. T., and Powell, K. G. (2000). Magnetospheric configuration for Parker-spiral IMF conditions: results of a 3D AMR MHD simulation. Adv. Space Res., 26(1), 139–149.

Gou, X. C., Shi, Q. Q., Tian, A. M., Sun, W. J., Dunlop, M. W., Fu, S. Y., Zong, Q. G., Facskó, G., Nowada, M., … Shen, X. C. (2016). Solar wind plasma entry observed by cluster in the high-latitude magnetospheric lobes. J. Geophys. Res., 121(5), 4135–4144.

Guo, J. G., Shi, J. K., Cheng, Z. W., Zhang, Z. Y., Wang, Z., Zhang, T. L., Liu, Z. X., and Dunlop, M. (2013). Variation of dependence of the cusp location at different altitude on the dipole tilt. Chin. Sci. Bull., 58(28-29), 3541–3545.

Jing, H., Lu, J. Y., Kabin, K., Zhao, J. S., Liu, Z. Q., Yang, Y. F., Zhao, M. X., and Wang, M. (2014). MHD simulation of energy transfer across magnetopause during sudden changes of the IMF orientation. Planet. Space Sci., 97, 50–59.

Kabin, K., Rankin, R., Marchand, R., Gombosi, T. I., Clauer, C. R., Ridley, A. J., Papitashvili, V. O., and DeZeeuw, D. L. (2003). Dynamic response of Earth’s magnetosphere to By reversals. J. Geophys. Res., 108(A3), 1132.

Knipp, D., Eriksson, S., Kilcommons, L., Crowley, G., Lei, J., Hairston, M., and Drake, K. (2011). Extreme poynting flux in the dayside thermosphere: Examples and statistics. Geophys. Res. Lett., 38(16), L16102.

Korth, H., Anderson, B. J., Frey, H. U., and Waters, C. L. (2005). High-latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF. Ann. Geophys., 23(4), 1295–1310.

Li, W., Knipp, D., Lei, J., and Raeder, J. (2011). The relation between dayside local Poynting flux enhancement and cusp reconnection. J. Geophys.Res., 116(A8), A08301.

Liu, Z. Q., Lu, J. Y., Kabin, K., Yang, Y. F., Zhao, M. X., and Cao, X. (2012). Dipole tilt control of the magnetopause for southward IMF from global magnetohydrodynamic simulations. J. Geophys. Res., 117(A7), A07207.

Lu, J. Y., Liu, Z. Q., Kabin, K., Zhao, M. X., Liu, D. D., Zhou, Q., and Xiao, Y. (2011). Three dimensional shape of the magnetopause: Global MHD results. J. Geophy. Res., 116(A9), A09237.

Lu, J. Y., Liu, Z. Q., Kabin, K., Jing, H., Zhao, M. X., and Wang, Y. (2013a). The IMF dependence of the magnetopause from global MHD simulations. J. Geophys. Res., 118(6), 3113–3125.

Lu, J. Y., Jing, H., Liu, Z. Q., Kabin, K., and Jiang, Y. (2013b). Energy transfer across the magnetopause for northward and southward interplanetary magnetic fields. J. Geophys. Res., 118(5), 2021–2033.

Luhmann, J. G., Walker, R. J., Russell, C. T., Crooker, N. U., Spreiter, J. R., and Stahara, S. S. (1984). Patterns of potential magnetic field merging sites on the dayside magnetopause. J. Geophys. Res., 89(A3), 1739–1742.

Milan S. E., Lester M., Cowley S. W. H., Oksavik, K., Brittnacher, M., Greenwald, R. A., Sofko, G., and Villain, J. P. (2003). Variations in the polar cap area during two substorm cycles. Ann. Geophys., 21(5), 1121–1140.

Newell, P. T., and Meng, C. I. (1989). Dipole tilt angle effects on the latitude of the cusp and cleft/low- altitude boundary layer. J. Geophys. Res., 94(A6), 6949–6953.

Ogino, T. (1986). A three-dimensional MHD simulation of the interaction of the solar wind with the Earth’s magnetosphere: the generation of field-aligned currents. J. Geophys. Res., 91(A6), 6791–6806.

Øieroset, M., Raeder, J., Phan, T. D., Wing, S., McFadden, J. P., Li, W., Fujimoto, M., Rème, H., and Balogh, A. (2005). Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22-24, 2003. Geophys. Res. Lett., 32(12), L12S07.

Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., and De Zeeuw, D. L. (1999). A solution- adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 154(2), 284–309.

Rae, I. J., Kabin, K., Lu, J. Y., Rankin, R., Milan, S. E., Fenrich, F. R., Watt, C. E. J., Zhang, J. C., Ridley, A. J., … DeZeeuw, D. L. (2010). Comparison of the open-closed separatrix in a global magnetospheric simulation with observations: The role of the ring current. J. Geophys. Res., 115(A8), A08216.

Raeder, J., McPherron, R. L., Frank, L. A., Kokubun, S., Lu, G., Mukai, T., Paterson, W. R., Sigwarth, J. B., Singer, H. J., and Slavin, J. A. (2000). Global simulation of the Geospace Environment Modeling substorm challenge event. J. Geophys. Res., 106(A1), 381–395.

Ridley, A. J., Hansen, K. C., Tóth, G., De Zeeuw, D. L., Gombosi, T. I., and Powell, K. G. (2002). University of Michigan MHD results of the geospace global circulation model metrics challenge. J. Geophys. Res., 107(A10), 1290.

Russell, C. T., and Elphic, R. C. (1978). Initial ISEE magnetometer results: Magnetopause observations. Space Sci. Rev., 22(6), 681–715.

Shepherd, S. G., Greenwald, R. A., and Ruohoniemi, J. M. (2002). Cross polar cap potentials measured with Super Dual Auroral Radar Network during quasi-steady solar wind and interplanetary magnetic field conditions. J. Geophys. Res., 107(A7), 1094.

Shi, Q. Q., Zong, Q.-G., Zhang, H., Pu, Z. Y., Fu, S. Y., Xie, L., Chen, Y., Li, L., Xia, L. D., Liu, Z. X., Fazakerley, A. N., Reme, H., and Lucek, E. (2009). Cluster observations of the entry layer equatorward of the cusp under northward interplanetary magnetic field. J. Geophys. Res., 114(A12), A12219.

Shi, Q. Q., Zong, Q. G., Fu, S. Y., Dunlop, M. W., Pu, Z. Y., Parks, G. K., Wei, Y., Li, W. H., Zhang, H., … Lucek, E. (2013). Solar wind entry into the high-latitude terrestrial magnetosphere during geomagnetically quiet times. Nat. Commun., 4, 1466.

Song, P., DeZeeuw, D. L., Gombosi, T. I., Groth, C. P. T., and Powell, K. G. (1999). A numerical study of solar wind-magnetosphere interaction for northward interplanetary magnetic field. J. Geophys. Res., 104(A12), 28361–28378.

Toffoletto, F., Sazykin, S., Spiro, R., and Wolf, R. (2003). Inner magnetospheric modeling with the Rice Convection Model. Space Sci. Rev., 107(1-2), 175–196.

Tóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R.; de Zeeuw, D. L., Hansen, K. C., Kane, K. J., Manchester, W. B., … Kóta, J. (2005). Space Weather Modeling Framework: A new tool for the space science community. J. Geophys. Res., 110(A12), A12226.

Tóth, G., De Zeeuw, D. L., Gombosi, T. I., Manchester, W. B., Ridley, A. J., Sokolov, I. V., and Roussev, I. I. (2007). Sun-to-thermosphere simulation of the 28-30 October 2003 storm with the Space Weather Modeling Framework. Space Wea., 5(6), S06003.

Tsyganenko, N. A., and Stern, D. P. (1996). Modeling the global magnetic field of the large-scale Birkeland current systems. J. Geophys. Res., 101(A12), 27187–27198.

Wang, J. Y., Wang, C., Huang, Z. H., and Sun, T. R. (2014). Effects of the interplanetary magnetic field on the twisting of the magnetotail: Global MHD results. J. Geophys. Res., 119(3), 1887–1897.

Watanabe, M., Kabin, K., Sofko, G. J., Rankin, R., Gombosi, T. I., Ridley, A. J., and Clauer, C. R. (2005). Internal reconnection for northward interplanetary magnetic field. J. Geophys. Res., 110(A6), A06210.

Yang, Y. F., Lu, J. Y., Wang, J. S., Peng, Z., Qian, Q., and Xiao, Y. (2011). Different response of dayside auroras to increases in solar wind dynamic pressure. J. Geophys. Res., 116(A8), A08314.

Zhang, J. C., Liemohn, M. W., de Zeeuw, D. L., Borovsky, J. E., Ridley, A. J., Toth, G., Sazykin, S., Thomsen, M. F., Kozyra, J. U., … Wolf, R. A. (2007). Understanding storm-time ring current development through data-model comparisons of a moderate storm. J. Geophys. Res., 112(A4), A04208.


YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028


Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048


BaoHang Qu, JianYong Lu, Ming Wang, HuanZhi Yuan, Yue Zhou, HanXiao Zhang, 2021: Formation of the bow shock indentation: MHD simulation results, Earth and Planetary Physics, 5, 259-269. doi: 10.26464/epp2021033


HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019


Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007


Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001


ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037


DianJun Zhang, WenLong Liu, Zhao Zhang, 2023: Validation of the use of THEMIS-B and THEMIS-C as a near-Earth solar wind monitor, Earth and Planetary Physics. doi: 10.26464/epp2023003


BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003


XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024


ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033


Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032


QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036


BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001


ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061


Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020


Safi Ullah, HaiLong Li, Abdur Rauf, Lin Meng, Bin Wang, ShuCan Ge, MaoYan Wang, 2021: Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region, Earth and Planetary Physics, 5, 196-204. doi: 10.26464/epp2021016


ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Magnetosphere response to the IMF turning from north to south

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan