Citation:
YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou,
2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125.
http://doi.org/10.26464/epp2019015
2019, 3(2): 111-125. doi: 10.26464/epp2019015
Triangulation of red sprites observed above a mesoscale convective system in North China
1. | University of Science and Technology of China, School of Earth and Space Science, Hefei 230026, China |
2. | Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China |
3. | Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China |
4. | State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China |
5. | State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100049, China |
6. | Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute, Wuhan 430074, China |
7. | Department of Physics, National Cheng Kung University, Tainan 701, China |
8. | Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China |
The triangulation of red sprites was obtained, based on concurrent observations over a mesoscale convective system (MCS) in North China from two stations separated by about 450 km. In addition, broadband sferics from the sprite-producing lightning were measured at five ground stations, making it possible to locate and identify the individual causative lightning discharges for different elements in this dancing sprite event. The results of our analyses indicate that the sprites were produced above the trailing stratiform region of the MCS, and their parent strokes were located mainly in the peripheral area of the stratiform. The lateral offset between sprites and causative strokes ranges from a few km to more than 50 km. In a particularly bright sprite, with a distinct halo feature and streamers descending down to an altitude of approximately 48 km, the sprite current signal identified in the electric sferic, measured at a range of about 1,110 km, peaked at approximately 1 ms after the return stroke.
Boggs, L. D., Liu, N. Y., Splitt, M., Lazarus, S., Glenn, C., Rassoul, H., and Cummer, S. A. (2016). An analysis of five negative sprite—parent discharges and their associated thunderstorm charge structures. J. Geophys. Res. Atmos., 121(2), 759–784. https://doi.org/10.1002/2015JD024188 |
Cho, M., and Rycroft, M. J. (1998). Computer simulation of the electric field structure and optical emission from cloud-top to the ionosphere. J. Atmos. Sol. Terr. Phys., 60(7-9), 871–888. https://doi.org/10.1016/S1364-6826(98)00017-0 |
Cummer, S. A., and Inan, U. S. (1997). Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics. Geophys. Res. Lett., 24(14), 1731–1734. https://doi.org/10.1029/97GL51791 |
Cummer, S. A., and Lyons, W. A. (2005). Implications of lightning charge moment changes for sprite initiation. J. Geophys. Res. Space Phys., 110(A4), A04304. https://doi.org/10.1029/2004JA010812 |
Cummer, S. A., Lyons, W. A., and Stanley, M. A. (2013). Three years of lightning impulse charge moment change measurements in the United States. J. Geophys. Res. Atmos., 118(11), 5176–5189. https://doi.org/10.1002/jgrd.50442 |
Füllekrug, M., Moudry, D. R., Dawes, G., and Sentman, D. D. (2001). Mesospheric sprite current triangulation. J. Geophys. Res. Atmos., 106(D17), 20189–20194. https://doi.org/10.1029/2001JD900075 |
Gordillo-Vázquez, F. J., and Luque, A. (2010). Electrical conductivity in sprite streamer channels. Geophys. Res. Lett., 37(16), L16809. https://doi.org/10.1029/2010GL044349 |
Hager, W. W., Sonnenfeld, R. G., Feng, W., Kanmae, T., Stenbaek-Nielsen, H. C., McHarg, M. G., Haaland, R. K., Cummer, S. A., Lu, G. P, and Lapierre, J. L. (2012). Charge rearrangement by sprites over a North Texas mesoscale convective system. J. Geophys. Res. Atmos., 117(D22), D22101. https://doi.org/10.1029/2012JD018309 |
Hayakawa, M., Nakamura, T., Hobara, Y., and Williams, E. (2004). Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J. Geophys. Res. Space Phys., 109(A1), A01312. https://doi.org/10.1029/2003JA009905 |
Houze, R. A. Jr., Smull, B. F., and Dodge, P. (1990). Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118(3), 613–654. https://doi.org/10.1175/1520-0493(1990)118<0613:MOOSRI>2.0.CO;2 |
Huang, A. J., Lu, G. P., Zhang, H. B., Liu, F. F., Fan, Y. F., Zhu, B. Y., Yang, J., and Wang, Z. C. (2018). Locating parent lightning strokes of sprites observed over a mesoscale convective system in Shandong Province, China. Adv. Atmos. Sci., 35(11), 1396–1414. https://doi.org/10.1007/s00376-018-7306-4 |
Kosar, B. C., Liu, N. Y., and Rassoul, H. K. (2013). Formation of sprite streamers at subbreakdown conditions from ionospheric inhomogeneities resembling observed sprite halo structures. Geophys. Res. Lett., 40(23), 6282–6287. https://doi.org/10.1002/2013GL058294 |
Lang, T. J., Rutledge, S. A., and Wiens, K. C. (2004). Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophys. Res. Lett., 31(10), L10105. https://doi.org/10.1029/2004GL019823 |
Lang, T. J., Lyons, W. A., Rutledge, S. A., Meyer, J. D., MacGorman, D. R., and Cummer, S. A. (2010). Transient luminous events above two mesoscale convective systems: Storm structure and evolution. J. Geophys. Res. Space Phys., 115(A5), A00E22. https://doi.org/10.1029/2009JA014500 |
Lang, T. J., Cummer, S. A., Rutledge, S. A., and Lyons, W. A. (2013). The meteorology of negative cloud-to-ground lightning strokes with large charge moment changes: implications for negative sprites. J. Geophys. Res. Atmos., 118(14), 7886–7896. https://doi.org/10.1002/jgrd.50595 |
Li, J. B., Cummer, S. A., Lyons, W. A., and Nelson, T. E. (2008). Coordinated analysis of delayed sprites with high-speed images and remote electromagnetic fields. J. Geophys. Res. Space Phys., 113(D20), D20206. https://doi.org/10.1029/2008JD010008 |
Li, J. B., Cummer, S., Lu, G. P., and Zigoneanu, L. (2012). Charge moment change and lightning-driven electric fields associated with negative sprites and halos. J. Geophys. Res. Space Phys., 117(A9), A09310. https://doi.org/10.1029/2012JA017731 |
Liu, F. F., Zhu, B. Y., Lu, G. P., Qin, Z. L., Lei, J. H., Peng, K. M., Chen, A. B., Huang, A. J., Cummer, S. A., … Zhou, H. L. (2018). Observations of blue discharges associated with negative narrow bipolar events in active deep convection. Geophys. Res. Lett., 45(6), 2842–2851. https://doi.org/10.1002/2017GL076207 |
Liu, N. Y., Kosar, B., Sadighi, S., Dwyer, J. R., and Rassoul, H. K. (2012). Formation of streamer discharges from an isolated ionization column at subbreakdown conditions. Phys. Rev. Lett., 109(2), 025002. https://doi.org/10.1103/PhysRevLett.109.025002 |
Liu, N. Y., Dwyer, J. R., Stenbaek-Nielsen, H. C., and McHarg, M. G. (2015). Sprite streamer initiation from natural mesospheric structures. Nat. Commun., 6(1), 7540. https://doi.org/10.1038/ncomms8540 |
Lu, G. P., Cummer, S. A., Li, J. B., Zigoneanu, L., Lyons, W. A., Stanley, M. A., Rison, W., Krehbiel, P. R., Edens, H. E., … Samaras, T. (2013). Coordinated observations of sprites and in-cloud lightning flash structure. J. Geophys. Res. Atmos., 118(12), 6607–6632. https://doi.org/10.1002/jgrd.50459 |
Lu, G. P., Cummer, S. A., Chen, A. B., Lyu, F. C., Li, D. S., Liu, F., Hsu, R. R., and Su, H. T. (2017). Analysis of lightning strokes associated with sprites observed by ISUAL in vicinity of North America. Terr. Atmos. Ocean. Sci., 28(4), 583–595. https://doi.org/10.3319/TAO.2017.03.31.01 |
Luque, A., and Ebert, U. (2010). Sprites in varying air density: Charge conservation, glowing negative trails and changing velocity. Geophys. Res. Lett., 37(6), L06806. https://doi.org/10.1029/2009GL041982 |
Lyons, W. A. (1996). Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res. Atmos. Phys., 101(D23), 29641–29652. https://doi.org/10.1029/96JD01866 |
Lyons, W. A., Nelson, T. E., Williams, E. R., Cummer, S. A., and Stanley, M. A. (2003). Characteristics of sprite—producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems. Mon. Wea. Rev., 131(10), 2417–2427. https://doi.org/10.1175/1520-0493(2003)131<2417:COSPCL>2.0.CO;2 |
Marshall, R. A., Inan, U. S., and Lyons, W. A. (2007). Very low frequency sferic bursts, sprites, and their association with lightning activity. J. Geophys. Res. Atmos., 112(D22), D22105. https://doi.org/10.1029/2007JD008857 |
Mlynarczyk, J., Bór, J., Kulak, A., Popek, M., and Kubisz, J. (2015). An unusual sequence of sprites followed by a secondary TLE: An analysis of ELF radio measurements and optical observations. J. Geophys. Res. Space Phys., 120(3), 2241–2254. https://doi.org/10.1002/2014JA020780 |
Ohkubo, A., Fukunishi, H., Takahashi, Y., and Adachi, T. (2005). VLF/ELF sferic evidence for in-cloud discharge activity producing sprites. Geophys. Res. Lett., 32(4), L04812. https://doi.org/10.1029/2004GL021943 |
Pasko, V. P., and Hans C. Stenbaek-Nielsen (2002). Diffuse and streamer regions of sprites. Geophys. Res. Lett., 29(10), 82-1. https://doi.org/10.1029/2001GL014241 |
Peng, K. M., Hsu, R. R., Su, H. T., Chen, A., Chou, J. K., Chang, S. C., Wu, Y. J., Hung, C. L., Yang, I. C., and Tsai, S. H. (2017). Transient luminous event coordinated observa-tions using FORMOSAT-2 satellite and Taiwan sprites campaign. Terr. Atmos. Ocean. Sci., 28(4), 597–608. https://doi.org/10.3319/TAO.2016.09.21.03 |
Qin, J. Q., Celestin, S., and Pasko, V. P. (2012). Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites. Geophys. Res. Lett., 39(22), L22801. https://doi.org/10.1029/2012GL053951 |
Qin, J. Q., Pasko, V. P., McHarg, M. G., and Stenbaek-Nielsen, H. C. (2014). Plasma irregularities in the D-region ionosphere in association with sprite streamer initiation. Nat. Commun., 5, 3740. https://doi.org/10.1038/ncomms4740 |
Salut, M. M., Cohen, M. B., Ali, M. A. M., Graf, K. L., Cotts, B. R. T., and Kumar, S. (2013). On the relationship between lightning peak current and early VLF perturbations. J. Geophys. Res. Space Phys., 118(11), 7272–7282. https://doi.org/10.1002/2013JA019087 |
Sentman, D. D., and Wescott, E. M. (1993). Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys. Res. Lett., 20(24), 2857–2860. https://doi.org/10.1029/93GL02998 |
Soula, S., van der Velde, O., Montanyà, J., Neubert, T., Chanrion, O., and Ganot, M. (2009). Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies. Atmos. Res., 91(2-4), 514–528. https://doi.org/10.1016/j.atmosres.2008.06.017 |
Soula, S., Iacovella, F., van der Velde, O., Montanyà, J., Füllekrug, M., Farges, T., Bór, J., Georgis, J. F., NaitAmor, S., and Martin, J. M. (2014). Multi-instrumental analysis of large sprite events and their producing storm in southern France. Atmos. Res., 135-136, 415–431. https://doi.org/10.1016/j.atmosres.2012.10.004 |
Soula, S., Defer, E., Füllekrug, M., van der Velde, O., Montanya, J., Bousquet, O., Mlynarczyk, J., Coquillat, S., Pinty, J.-P., … Pedeboy, S. (2015). Time and space correlation between sprites and their parent lightning flashes for a thunderstorm observed during the HyMeX campaign. J. Geophys. Res. Atmos., 120(22), 11552–11574. https://doi.org/10.1002/2015JD023894 |
Soula, S., Mlynarczyk, J., Füllekrug, M., Pineda, N., Georgis, J. F., van der Velde, O., Montanyà, J., and Fabró, F. (2017). Dancing sprites: Detailed analysis of two case studies. J. Geophys. Res. Atmos., 122(6), 3173–3192. https://doi.org/10.1002/2016JD025548 |
Stenbaek‐Nielsen, H. C., Moudry, D. R., Wescott, E. M., Sentman, D. D., and Sabbas, F. T. S. (2000). Sprites and possible mesospheric effects. Geophys. Res. Lett., 27(23), 3829–3832. https://doi.org/10.1029/2000GL003827 |
van der Velde, O. A., Mika, Á., Soula, S., Haldoupis, C., Neubert, T., and Inan, U. S. (2006). Observations of the relationship between sprite morphology and in-cloud lightning processes. J. Geophys. Res. Atmos., 111(D15), D15203. https://doi.org/10.1029/2005JD006879 |
van der Velde, O. A., Montanyà, J., Soula, S., Pineda, N., and Mlynarczyk, J. (2014). Bidirectional leader development in sprite—producing positive cloud-to-ground flashes: Origins and characteristics of positive and negative leaders. J. Geophys. Res. Atmos., 119(22), 12755–12779. https://doi.org/10.1002/2013JD021291 |
Yang, J., Lu, G. P., Lee, L. J., and Feng, G. L. (2015). Long-delayed bright dancing sprite with large horizontal displacement from its parent flash. J. Atmos. Sol. Terr. Phys., 129, 1–5. https://doi.org/10.1016/j.jastp.2015.04.001 |
Yang, J., Liu, N.Y., Sato, M., Lu, G. P., Wang, Y., and Feng, G. L. (2018). Characteristics of thunderstorm structure and lightning activity causing negative and positive sprites. J. Geophys. Res. Atmos., 123(15), 8190–8207. https://doi.org/10.1029/2017JD026759 |
[1] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
[2] |
Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013 |
[3] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[4] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[5] |
EunJin Jang, Chao Yue, QiuGang Zong, SuiYan Fu, HaoBo Fu, 2021: The effect of non-storm time substorms on the ring current dynamics, Earth and Planetary Physics, 5, 251-258. doi: 10.26464/epp2021032 |
[6] |
JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017 |
[7] |
Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022 |
[8] |
SiYu Miao, HaiJiang Zhang, YuYang Tan, Ye Lin, 2021: Development of a new high resolution waveform migration location method and its applications to induced seismicity, Earth and Planetary Physics, 5, 520-531. doi: 10.26464/epp2021056 |
[9] |
MingHui Zhu, YiQun Yu, Xing Cao, BinBin Ni, XingBin Tian, JinBin Cao, Vania K. Jordanova, 2022: Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics, Earth and Planetary Physics, 6, 329-338. doi: 10.26464/epp2022037 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)