Citation:
Gu, H., Cui, J., He, Z. G., and Zhong, J. H. (2020). A MAVEN investigation of O++ in the dayside Martian ionosphere. Earth Planet. Phys., 4(1), 11–16.. http://doi.org/10.26464/epp2020009
2020, 4(1): 11-16. doi: 10.26464/epp2020009
A MAVEN investigation of O++ in the dayside Martian ionosphere
1. | State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China |
2. | School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China |
3. | Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230000, China |
4. | National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China |
O++ is an interesting species in the ionospheres of both the Earth and Venus. Recent measurements made by the Neutral Gas and Ion Mass Spectrometer (NGIMS) on board the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft provide the first firm detection of O++ in the Martian ionosphere. This study is devoted to an evaluation of the dominant O++ production and destruction channels in the dayside Martian ionosphere, by virtue of NGIMS data accumulated over a large number of MAVEN orbits. Our analysis reveals the dominant production channels to be double photoionization of O at low altitudes and photoionization of O+ at high altitudes, respectively, in response to the varying degree of O ionization. O++ destruction is shown to occur mainly via charge exchange with CO2 at low altitudes and with O at high altitudes. In the dayside median sense, an exact balance between O++ production and destruction is suggested by the data below 200 km. The apparent discrepancy from local photochemical equilibrium at higher altitudes is interpreted as a signature of strong O++ escape on Mars, characterized by an escape rate of 6×1022 s–1.
Benna, M., Mahaffy, P. R., Grebowsky, J. M., Fox, J. L., Yelle, R. V., and Jakosky, B. M. (2015). First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophys. Res. Lett., 42(21), 8958–8965. https://doi.org/10.1002/2015GL066146 |
Bougher, S., Jakosky, B., Halekas, J., Grebowsky, J., Luhmann, J., Mahaffy, P., Connerney, J., Eparvier, F., Ergun, R.,.. Yelle, R. V. (2015). Early MAVEN deep dip campaign reveals thermosphere and ionosphere variability. Science, 350(6261), aad0459. https://doi.org/10.1126/science.aad0459 |
Breig, E. L., Torr, M. R., Torr, D. G., Hanson, W. B., Hoffman, J. H., Walker, J. G. G., and Nier, A. O. (1977). Doubly charged atomic oxygen ions in the thermosphere, 1. Photochemistry. J. Geophys. Res. Space Phys., 82(7), 1008–1012. https://doi.org/10.1029/JA082i007p01008 |
Breig, E. L., Torr, M. R., and Kayser, D. C. (1982). Observations and photochemistry of O++ in the daytime thermosphere. J. Geophys. Res. Space Phys., 87(A9), 7653–7665. https://doi.org/10.1029/JA087iA09p07653 |
Cao, Y. T., Cui, J., Wu, X. S., Guo, J. P., and Wei, Y. (2019). Structural variability of the nightside Martian ionosphere near the terminator: implications on plasma sources. J. Geophys. Res. Planets, 124(E6), 1495–1511. https://doi.org/10.1029/2019JE005970 |
Chaufray, J. Y., Leblanc, F., Quémerais, E., and Bertaux, J. L. (2009). Martian oxygen density at the exobase deduced from OI 130.4-nm observations by Spectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars on Mars Express. J. Geophys. Res. Planets, 114(E2). https://doi.org/10.1029/2008JE003130 |
Chen, R. H., Cravens, T. E., and Nagy, A. F. (1978). The Martian ionosphere in light of the Viking observations. J. Geophys. Res. Space Phys., 83(A8), 3871–3876. https://doi.org/10.1029/JA083iA08p03871 |
Connerney, J. E. P., Acuña, M. H., Wasilewski, P. J., Ness, N. F., Rème, H., Mazelle, C., Vignes, D., Lin, R. P., Mitchell, D. L., and Cloutier, P. A. (1999). Magnetic lineations in the ancient crust of Mars. Science, 284(5415), 794–798. https://doi.org/10.1126/science.284.5415.794 |
Cui, J., Galand, M., Yelle, R. V., Wahlund, J.-E., Ågren, K., Waite, Jr. J. H., and Dougherty, M. K. (2010). Ion transport in Titan’s upper atmosphere. J. Geophys. Res. Space Phys., 115(A6), A06314. https://doi.org/10.1029/2009JA014563 |
Cui, J., Galand, M., Coates, A. J., Zhang, T. L., and Müller-Wodarg, I. C. F. (2011). Suprathermal electron spectra in the Venus ionosphere. J. Geophys. Res. Space Phys., 116(A4), A04321. https://doi.org/10.1029/2010JA016153 |
Cui, J., Galand, M., Zhang, S. J., Vigren, E., and Zou, H. (2015). The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data. J. Geophys. Res. Planets, 120(E2), 278–286. https://doi.org/10.1002/2014JE004726 |
Cui, J., Cao, Y. T., Wu, X. S., Xu, S. S., Yelle, R. V., Stone, S., Vigren, E., Edberg, N. J. T., Shen, C. L., … and Wei, Y. (2019). Evaluating local ionization balance in the nightside Martian upper atmosphere during MAVEN Deep Dip campaigns. Astrophys. J. Lett., 876(1), L12. https://doi.org/10.3847/2041-8213/ab1b34 |
Eparvier, F. G., Chamberlin, P. C., Woods, T. N., and Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev., 195(1-4), 293–301. https://doi.org/10.1007/s11214-015-0195-2 |
Fowler, C. M., Andersson, L., Ergun, R. E., Morooka, M., Delory, G., Andrews, D. J., Lillis, R. J., McEnulty, T., Weber, T. D.,.. Jakosky, B. M. (2015). The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophys. Res. Lett., 42(1), 8854–8861. https://doi.org/10.1002/2015GL065267 |
Fox, J. L., and Victor, G. A. (1981). O++ in the Venusian ionosphere. J. Geophys. Res. Space Phys., 86(A4), 2438–2442. https://doi.org/10.1029/JA086iA04p02438 |
Fox, J. L. (1997). Upper limits to the outflow of ions at Mars: Implications for atmospheric evolution. Geophys. Res. Lett., 24(22), 2901–2904. https://doi.org/10.1029/97GL52842 |
Fox, J. L. (2009). Morphology of the dayside ionosphere of Mars: Implications for ion outflows. J. Geophys. Res. Planets, 114(E12), E12005. https://doi.org/10.1029/2009JE003432 |
Geiss, J., Balsiger, H., Eberhardt, P., Walker, H. P., Weber, L., Young, D. T., and Rosenbauer, H. (1978). Dynamics of magnetospheric ion composition as observed by the GEOS mass spectrometer. Space Sci. Rev., 22(5), 537–566. https://doi.org/10.1007/BF00223940 |
Geiss, J., and Young, D. T. (1981). Production and transport of O++ in the ionosphere and plasmasphere. J. Geophys. Res. Space Phys., 86(A6), 4739–4750. https://doi.org/10.1029/JA086iA06p04739 |
Ghosh, S., Mahajan, K. K., Grebowsky, J. M., and Nath, N. (1995). Morphology of O++ ions and their maintenance in the nightside Venus ionosphere. J. Geophys. Res. Space Phys., 100(A12), 23983–23991. https://doi.org/10.1029/95JA01581 |
Girazian, Z., Mahaffy, P. R., Lillis, R. J., Benna, M., Elrod, M., and Jakosky, B. M. (2017a). Nightside ionosphere of Mars: Composition, vertical structure, and variability. J. Geophys. Res. Space Phys., 122(A4), 4712–4725. https://doi.org/10.1002/2016JA023508 |
Girazian, Z., Mahaffy, P., Lillis, R. J., Benna, M., Elrod, M., Fowler, C. M., and Mitchell, D. L. (2017b). Ion densities in the nightside ionosphere of Mars: Effects of electron impact ionization. Geophys. Res. Lett., 44(22), 11248–11256. https://doi.org/10.1002/2017GL075431 |
Hedin, A. E. (1983). A revised thermospheric model based on mass spectrometer and incoherent scatter data: MSIS-83. J. Geophys. Res. Space Phys., 88(A12), 10170–10188. https://doi.org/10.1029/JA088iA12p10170 |
Henry, R. J. W. (1968). Photoionization cross sections for N and O+. J. Chem. Phys., 48(8), 3635–3638. https://doi.org/10.1063/1.1669662 |
Howorka, F., Viggiano, A. A., Albritton, D. L., Ferguson, E. E., and Fehsenfeld, F. C. (1979). Laboratory studies of O++ reactions of ionospheric importance. J. Geophys. Res. Space Phys., 84(A10), 5941–5942. https://doi.org/10.1029/JA084iA10p05941 |
Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mission to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271 |
Johnsen, R., and Biondi, M. A. (1978). Measurements of the reaction rates of O++ ions with N2 and O2 at thermal energy and their ionospheric implications. Geophys. Res. Lett., 5(10), 847–848. https://doi.org/10.1029/GL005i010p00847 |
Kar, J., Mahajan, K. K., and Kohli, R. (1996). On the outflow of O2+ ions at Mars. J. Geophys. Res. Planets, 101(E5), 12747–12752. https://doi.org/10.1029/95JE03526 |
Laher, R. R., and Gilmore, F. R. (1990). Updated excitation and ionization cross sections for electron impact on atomic oxygen. J. Phys. Chem. Ref. Data, 19(1), 277–305. https://doi.org/10.1063/1.555872 |
Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., and Jakosky, B. M. (2015a). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett., 42(21), 8951–8957. https://doi.org/10.1002/2015GL065329 |
Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., … Nolan, J. T. (2015b). The neutral gas and ion mass spectrometer on the mars atmosphere and volatile evolution mission. Space Sci. Rev., 195(1-4), 59–73. https://doi.org/10.1007/s11214-014-0091-1 |
Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., and Mahaffy, P. R. (2018). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. J. Geophys. Res. Planets, 123(11), 2842–2867. https://doi.org/10.1029/2018JE005559 |
Taylor, Jr. H. A., Brinton, H. C., Bauer, S. J., Hartle, R. E., Cloutier, P. A., and Daniell, Jr. R. E. (1980). Global observations of the composition and dynamics of the ionosphere of Venus: Implications for the solar wind interaction. J. Geophys. Res. Space Phys., 85(A13), 7765–7777. https://doi.org/10.1029/JA085iA13p07765 |
Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res. Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512 |
Thissen, R., Witasse, O., Dutuit, O., Wedlund, C. S., Gronoff, G., and Lilensten, J. (2011). Doubly-charged ions in the planetary ionospheres: a review. Phys. Chem. Chem. Phys., 13(41), 18264–18287. https://doi.org/10.1039/C1CP21957J |
Victor, G. A., and Constantinides, E. R. (1979). Double photoionization and doubly charged ions in the thermosphere. Geophys. Res. Lett., 6(6), 519–522. https://doi.org/10.1029/GL006i006p00519 |
Withers, P., Fallows, K., Girazian, Z., Matta, M., Häusler, B., Hinson, D., Tyler, L., Morgan, D., Pätzold, M.,.. Witasse, O. (2012). A clear view of the multifaceted dayside ionosphere of Mars. Geophys. Res. Lett., 39(18), L18202. https://doi.org/10.1029/2012GL053193 |
Wu, X. S., Cui, J., Xu, S. S., Lillis, R. J., Yelle, R. V., Edberg, N. J. T., Vigren, E., Rong, Z. J., Fan, K., … Mitchell, D. L. (2019). The morphology of the topside Martian ionosphere: implications on bulk ion flow. J. Geophys. Res. Planets, 124(3), 734–751. https://doi.org/10.1029/2018JE005895 |
[1] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[2] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[3] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[4] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[5] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[6] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[7] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[8] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[9] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[10] |
H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047 |
[11] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[12] |
D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004 |
[13] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[14] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[15] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[16] |
YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026 |
[17] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[18] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[19] |
XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063 |
[20] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)