Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Yao, S. T., Yue, Z. S., Shi, Q. Q., Degeling, A. W., Fu, H. S., Tian, A. M., Zhang, H., Vu, A., Guo, R. L., ... and Sun, W. J. (2021). Statistical properties of kinetic-scale magnetic holes in terrestrial space. Earth Planet. Phys., 5(1), 63–72. http://doi.org/10.26464/epp2021011

2021, 5(1): 63-72. doi: 10.26464/epp2021011

Statistical properties of kinetic-scale magnetic holes in terrestrial space

1. 

Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai Shandong 264209, China

2. 

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

3. 

School of Space and Environment, Beihang University, Beijing 100191, China

4. 

Physics Department and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, 99775, USA

5. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

6. 

Laboratoire de Physique Atmosphérique et Planétaire, STAR Institute, Université de Liège, Liège, B-4000, Belgium

7. 

School of Earth and Space Sciences, Peking University, Beijing 100871, China

8. 

SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China

9. 

Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA

Corresponding author: QuanQi Shi, sqq@sdu.edu.cn

Received Date: 2020-09-16
Web Publishing Date: 2020-12-25

Kinetic-scale magnetic holes (KSMHs) are structures characterized by a significant magnetic depression with a length scale on the order of the proton gyroradius. These structures have been investigated in recent studies in near-Earth space, and found to be closely related to energy conversion and particle acceleration, wave-particle interactions, magnetic reconnection, and turbulence at the kinetic-scale. However, there are still several major issues of the KSMHs that need further study — including (a) the source of these structures (locally generated in near-Earth space, or carried by the solar wind), (b) the environmental conditions leading to their generation, and (c) their spatio-temporal characteristics. In this study, KSMHs in near-Earth space are investigated statistically using data from the Magnetospheric Multiscale mission. Approximately 200,000 events were observed from September 2015 to March 2020. Occurrence rates of such structures in the solar wind, magnetosheath, and magnetotail were obtained. We find that KSMHs occur in the magnetosheath at rates far above their occurrence in the solar wind. This indicates that most of the structures are generated locally in the magnetosheath, rather than advected with the solar wind. Moreover, KSMHs occur in the downstream region of the quasi-parallel shock at rates significantly higher than in the downstream region of the quasi-perpendicular shock, indicating a relationship with the turbulent plasma environment. Close to the magnetopause, we find that the depths of KSMHs decrease as their temporal-scale increases. We also find that the spatial-scales of the KSMHs near the subsolar magnetosheath are smaller than those in the flanks. Furthermore, their global distribution shows a significant dawn-dusk asymmetry (duskside dominating) in the magnetotail.

Key words: kinetic scale, magnetic hole, magnetic dip, electron vortex, turbulence

Balikhin, M. A., Sagdeev, R. Z., Walker, S. N., Pokhotelov, O. A., Sibeck, D. G., Beloff, N., and Dudnikova, G. (2009). THEMIS observations of mirror structures: magnetic holes and instability threshold. Geophys. Res. Lett., 36(3), L03105. https://doi.org/10.1029/2008GL036923

Balikhin, M. A., Sibeck, D. G., Runov, A., and Walker, S. N. (2012). Magnetic holes in the vicinity of dipolarization fronts: mirror or tearing structures?. J. Geophys. Res., 117(A8), A08229. https://doi.org/10.1029/2012JA017552

Baumgärtel, K. (1999). Soliton approach to magnetic holes. J. Geophys. Res., 104(A12), 28295–28308. https://doi.org/10.1029/1999JA900393

Büchner, J., and Zelenyi, L. M. (1989). Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res., 94(A9), 11821–11842. https://doi.org/10.1029/JA094iA09p11821

Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L. (2016). Magnetospheric multiscale overview and science objectives. Space Sci. Rev., 199(1), 5–21. https://doi.org/10.1007/s11214-015-0164-9

Cattaneo, M. B. B., Basile, C., Moreno, G., and Richardson, J. D. (1998). Evolution of mirror structures in the magnetosheath of Saturn from the bow shock to the magnetopause. J. Geophys. Res., 103(A6), 11961–11972. https://doi.org/10.1029/97JA03683

Freund, Y., and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci., 55(1), 119–139. https://doi.org/10.1006/jcss.1997.1504

Fuselier, S. A., Lewis, W. S., Schiff, C., Ergun, R., Burch, J. L., Petrinec, S. M., and Trattner, K. J. (2016). Magnetospheric multiscale science mission profile and operations. Space Sci. Rev., 199(1-4), 77–103. https://doi.org/10.1007/s11214-014-0087-x

Ge, Y. S., McFadden, J. P., Raeder, J., Angelopoulos, V., Larson, D., and Constantinescu, O. D. (2011). Case studies of mirror-mode structures observed by THEMIS in the near-Earth tail during substorms. J. Geophys. Res., 116(A1), A01209. https://doi.org/10.1029/2010JA015546

Gershman, D. J., Dorelli, J. C., Viñas, A. F., Avanov, L. A., Gliese, U., Barrie, A. C., Coffey, V., Chandler, M., Dickson, C., … Burch, J. L. (2016). Electron dynamics in a subproton-gyroscale magnetic hole. Geophys. Res. Lett., 43(9), 4112–4118. https://doi.org/10.1002/2016GL068545

Goodrich, K. A., Ergun, R. E., Wilder, F. D., Burch, J., Torbert, R., Khotyaintsev, Y., Lindqvist, P. A., Russell, C., Strangeway, R., … Malaspina, D. M. (2016). MMS multipoint electric field observations of small-scale magnetic holes. Geophys. Res. Lett., 43(12), 5953–5959. https://doi.org/10.1002/2016GL069157

Haynes, C. T., Burgess, D., Camporeale, E., and Sundberg, T. (2015). Electron vortex magnetic holes: A nonlinear coherent plasma structure. Phys. Plasmas, 22(1), 012309. https://doi.org/10.1063/1.4906356

Hellinger, P., and Štverák, Š. (2018). Electron mirror instability: particle-in-cell simulations. J. Plasma Phys., 84(4), 905840402. https://doi.org/10.1017/S0022377818000703

Huang, J., Zhou, M., Li, H. M., Deng, X. H., Liu, J., and Huang, S. Y. (2019). Small-scale dipolarization fronts in the Earth's magnetotail. Earth Planet. Phys., 3(4), 358–364. https://doi.org/10.26464/epp2019036

Hoilijoki, S., Ergun, R. E., Schwartz, S. J., Eriksson, S., Wilder, F. D., Webster, J. M., Ahmadi, N., Le Contel, O., Burch, J. L., … Giles, B. L. (2019). Electron-scale magnetic structure observed adjacent to an electron diffusion region at the dayside magnetopause. J. Geophys. Res., 124(12), 10153–10169. https://doi.org/10.1029/2019JA027192

Horbury, T. S., Lucek, E. A., Balogh, A., Dandouras, I., and Rème, H. (2004). Motion and orientation of magnetic field dips and peaks in the terrestrial magnetosheath. J. Geophys. Res., 109(A9), A09209. https://doi.org/10.1029/2003JA010237

Huang, S. Y., Sahraoui, F., Retino, A., Le Contel, O., Yuan, Z. G., Chasapis, A., Aunai, N., Breuillard, H., Deng, X. H., … Burch, J. L. (2016). MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma. Geophys. Res. Lett., 43(15), 7850–7858. https://doi.org/10.1002/2016GL070033

Huang, S. Y., Du, J. W., Sahraoui, F., Yuan, Z. G., He, J. S., Zhao, J. S., Le Contel, O., Breuillard, H., Wang, D. D., … Burch, J. L. (2017a). A statistical study of kinetic-size magnetic holes in turbulent magnetosheath: MMS observations. J. Geophys. Res., 122(8), 8577–8588. https://doi.org/10.1002/2017JA024415

Huang, S. Y., Sahraoui, F., Yuan, Z. G., He, J. S., Zhao, J. S., Le Contel, O., Deng, X. H., Zhou, M., Fu, H. S., … Burch, J. L. (2017b). Magnetospheric multiscale observations of electron vortex magnetic hole in the turbulent magnetosheath plasma. Astrophys. J. Lett., 836(2), L27. https://doi.org/10.3847/2041-8213/aa5f50

Huang, S. Y., Sahraoui, F., Yuan, Z. G., Le Contel, O., Breuillard, H., He, J. S., Zhao, J. S., Fu, H. S., Zhou, M., … Burch, J. L. (2018). Observations of whistler waves correlated with electron-scale coherent structures in the magnetosheath turbulent plasma. Astrophys. J., 861(1), 29. https://doi.org/10.3847/1538-4357/aac831

Huang, S. Y., He, L. H., Yuan, Z. G., Sahraoui, F., Le Contel, O., Deng, X. H., Zhou, M., Fu, H. S., Jiang, K., … Burch, J. L. (2019). MMS observations of kinetic-size magnetic holes in the terrestrial magnetotail plasma sheet. Astrophys. J., 875(2), 113. https://doi.org/10.3847/1538-4357/ab0f2f

Jasinski, J. M., Arridge, C. S., Coates, A. J., Jones, G. H., Sergis, N., Thomsen, M. F., and Krupp, N. (2017). Diamagnetic depression observations at Saturn’s magnetospheric cusp by the Cassini Spacecraft. J. Geophys. Res., 122(6), 6283–6303. https://doi.org/10.1002/2016JA023738

Ji, X. F., Wang, X. G., Sun, W. J., Xiao, C. J., Shi, Q. Q., Liu, J., and Pu, Z. Y. (2014). EMHD theory and observations of electron solitary waves in magnetotail plasmas. J. Geophys. Res., 119(6), 4281–4289. https://doi.org/10.1002/2014JA019924

Karimabadi, H., Roytershteyn, V., Vu, H. X., Omelchenko, Y. A., Scudder, J., Daughton, W., Dimmock, A., Nykyri, K., Wan, M., … Geveci, B. (2014). The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas. Phys. Plasmas, 21(6), 062308. https://doi.org/10.1063/1.4882875

Kitamura, N., Omura, Y., Nakamura, S., Amano, T., Boardsen, S. A., Ahmadi, N., Le Contel, O., Lindqvist, P. A., Ergun, R. E., … Burch, J. L. (2020). Observations of the source region of whistler mode waves in magnetosheath mirror structures. J. Geophys. Res., 125(5), e2019JA027488. https://doi.org/10.1029/2019JA027488

Li, J. H., Yang, F., Zhou, X. Z. Zong, Q.-G., Artemyev, A. V., Rankin. R., Shi Q. Q., Yao S. T., Liu H., .. Burch. J. B. (2020a). Self-consistent kinetic model of nested electron- and ion-scale magnetic cavities in space plasmas . Nat Commun 11 , 5616. https://doi.org/10.1038/s41467-020-19442-0

Li, J. H., Zhou, X. Z., Zong, Q.-G., Yang, F., Fu, S. Y., Yao, S. T., Liu. J., Shi. Q. Q. (2020b). On the origin of donut-shaped electron distributions within magnetic cavities . Geophysical Research Letters, 47(e2020GL091613). https://doi.org/10.1029/2020GL091613

Li, Z., Lu, Q. M., Wang, R. S., Gao, X. L., and Chen, H. Y. (2019). In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection. Earth Planet. Phys., 3(6), 467–473. https://doi.org/10.26464/epp2019048

Li, Z. Y., Sun, W. J., Wang, X. G., Shi, Q. Q., Xiao, C. J., Pu, Z. Y., Ji, X. F., Yao, S. T., and Fu, S. Y. (2016). An EMHD soliton model for small-scale magnetic holes in magnetospheric plasmas. J. Geophys. Res., 121(5), 4180–4190. https://doi.org/10.1002/2016JA022424

Liu, H., Zong, Q.-G., Zhang, H., Xiao, C. J., Shi, Q. Q., Yao, S. T., He, J. S., Zhou, X. Z., Pollock, C., … Rankin, R. (2019a). MMS observations of electron scale magnetic cavity embedded in proton scale magnetic cavity. Nat. Commun., 10(1), 1040. https://doi.org/10.1038/s41467-019-08971-y

Liu, H., Zong, Q.-G., Zhang, H., Sun, W. J., Zhou, X. Z., Gershman, D. J., Shi, C., Zhang, K., Le, G., and Pollock, C. (2019b). The geometry of an electron scale magnetic cavity in the plasma sheet. Geophys. Res. Lett., 46(16), 9308–9317. https://doi.org/10.1029/2019GL083569

Liu, Y. Y., Fu, H. S., Olshevsky, V., Pontin, D. I., Liu, C. M., Wang, Z., Chen, G., Dai, L., and Retino, A. (2019). SOTE: A nonlinear method for magnetic topology reconstruction in space plasmas. Astrophys. J. Suppl. Ser., 244(2), 31. https://doi.org/10.3847/1538-4365/ab391a

Liu, Y. Y., Fu, H. S., Zong, Q.-G., Wang, Z., Liu, C. M., Huang, S. Y., Chen, Z. Z., Xu, Y., Shi, Q. Q., and Yao, S. T. (2020). First topology of electron-scale magnetic hole. Geophys. Res. Lett., 47(18), e2020GL088374. https://doi.org/10.1029/2020GL088374

Lu, S., Artemyev, A. V., Angelopoulos, V., Lin, Y., Zhang, X. J., Liu, J., Avanov, L. A., Giles, B. L., Russell, C. T., and Strangeway, R. J. (2019). The Hall electric field in Earth's magnetotail thin current sheet. J. Geophys. Res., 124(2), 1052–1062. https://doi.org/10.1029/2018JA026202

Lucek, E. A., Dunlop, M. W., Balogh, A., Cargill, P., Baumjohann, W., Georgescu, E., Haerendel, G., and Fornacon, K. H. (1999). Mirror mode structures observed in the dawn-side magnetosheath by Equator-S. Geophys. Res. Lett., 26(14), 2159–2162. https://doi.org/10.1029/1999GL900490

Lucek, E. A., Constantinescu, D., Goldstein, M. L., Pickett, J., Pinçon, J. L., Sahraoui, F., Treumann, R. A, and Walker, S. N. (2005). The magnetosheath. Space Sci. Rev., 118(1-4), 95–152. https://doi.org/10.1007/s11214-005-3825-2

Lui, A. T. Y. (1996). Current disruption in the Earth’s magnetosphere: observations and models. J. Geophys. Res., 101(A6), 13067–13088. https://doi.org/10.1029/96JA00079

Matsui, H., Farrugia, C. J., Goldstein, J., Torbert, R. B., Argall, M. R., Vaith, H., Russell, C. T., Strangeway, R. J., Giles, B. L., … Hosokawa, K. (2019). Velocity rotation events in the outer magnetosphere near the magnetopause. J. Geophys. Res., 124(6), 4137–4156. https://doi.org/10.1029/2019JA026548

Øieroset, M., Phan, T. D., Fujimoto, M., Lin, R. P., and Lepping, R. P. (2001). In situ detection of collisionless reconnection in the Earth’s magnetotail. Nature, 412(6845), 414–417. https://doi.org/10.1038/35086520

Plaschke, F., Karlsson, T., Götz, C., Möstl, C., Richter, I., Volwerk, M., Eriksson, A., Behar, E., and Goldstein, R. (2018). First observations of magnetic holes deep within the coma of a comet. Astron. Astrophys., 618, A114. https://doi.org/10.1051/0004-6361/201833300

Pollock, C., Moore, T., Jacques, A., Burch, J., Gliese, U., Saito, Y., Omoto, T., Avanov, L., Barrie, A., … Zeuch, M. (2016). Fast plasma investigation for magnetospheric multiscale. Space Sci. Rev., 199(1-4), 331–406. https://doi.org/10.1007/s11214-016-0245-4

Rezeau, L., Belmont, G., Manuzzo, R., Aunai, N., and Dargent, J. (2018). Analyzing the magnetopause internal structure: New possibilities offered by MMS tested in a case study. J. Geophys. Res., 123(1), 227–241. https://doi.org/10.1002/2017JA024526

Rong, Z. J., Wan, W. X., Shen, C., Li, X., Dunlop, M. W., Petrukovich, A. A., Zhang, T. L., and Lucek, E. (2011). Statistical survey on the magnetic structure in magnetotail current sheets. J. Geophys. Res., 116(A9), A09218. https://doi.org/10.1029/2011JA016489

Roytershteyn, V., Karimabadi, H., and Roberts, A. (2015). Generation of magnetic holes in fully kinetic simulations of collisionless turbulence. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 373(2041), 20140151. https://doi.org/10.1098/rsta.2014.0151

Russell, C. T., Riedler, W., Schwingenschuh, K., and Yeroshenko, Y. (1987). Mirror instability in the magnetosphere of comet Halley. Geophys. Res. Lett., 14(6), 644–647. https://doi.org/10.1029/GL014i006p00644

Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., … Richter, I. (2016). The magnetospheric multiscale magnetometers. Space Sci. Rev., 199(1-4), 189–256. https://doi.org/10.1007/s11214-014-0057-3

Sahraoui, F., Hadid, L., and Huang, S. Y. (2020). Magnetohydrodynamic and kinetic scale turbulence in the near-earth space plasmas: a (short) biased review. Rev. Mod. Plasma Phys., 4(1), 4. https://doi.org/10.1007/s41614-020-0040-2

Shi, Q. Q., Shen, C., Pu, Z. Y., Dunlop, M. W., Zong, Q.-G., Zhang, H., Xiao, C. J., Liu, Z. X., and Balogh, A. (2005). Dimensional analysis of observed structures using multipoint magnetic field measurements: application to Cluster. Geophys. Res. Lett., 32(12), L12105. https://doi.org/10.1029/2005GL022454

Shang, W. S., Tang, B. B., Shi, Q. Q., Tian, A. M., Zhou, X. Y., Yao, Z. H., Degeling, A. W., Rae, I. J., Fu, S. Y., … Wang, M. (2020). Unusual location of the geotail magnetopause near lunar orbit: a case study. J. Geophys. Res., 125(4), e2019JA027401. https://doi.org/10.1029/2019JA027401

Shi, Q. Q., Shen, C., Dunlop, M. W., Pu, Z. Y., Zong, Q.-G., Liu, Z. X., Lucek, E., and Balogh, A. (2006). Motion of observed structures calculated from multi-point magnetic field measurements: application to cluster. Geophys. Res. Lett., 33(8), L08109. https://doi.org/10.1029/2005GL025073

Shi, Q. Q., Pu, Z. Y., Soucek, J., Zong, Q.-G., Fu, S. Y., Xie, L., Chen, Y., Zhang, H., Li, L., … Reme, H. (2009). Spatial structures of magnetic depression in the Earth's high-altitude cusp: cluster multipoint observations. J. Geophys. Res., 114(A10), A10202. https://doi.org/10.1029/2009JA014283

Shi, Q. Q., Tian, A. M., Bai, S. C., Hasegawa, H., Degeling, A. W., Pu, Z. Y., Dunlop, M., Guo, R. L., Yao, S. T., … Liu, Z. Q. (2019). Dimensionality, coordinate system and reference frame for analysis of in-situ space plasma and field data. Space Sci. Rev., 215(4), 35. https://doi.org/10.1007/s11214-019-0601-2

Shustov, P. I., Zhang, X. J., Pritchett, P. L., Artemyev, A. V., Angelopoulos, V., Yushkov, E. V., and Petrukovich, A. A. (2019). Statistical properties of sub-ion magnetic holes in the dipolarized magnetotail: formation, structure, and dynamics. J. Geophys. Res., 124(1), 342–359. https://doi.org/10.1029/2018JA025852

Slavin, J. A., Owen, C. J., Kuznetsova, M. M., and Hesse, M. (1995). ISEE 3 observations of plasmoids with flux rope magnectic topologies. Geophys. Res. Lett., 22(15), 2061–2064. https://doi.org/10.1029/95GL01977

Song, P., Russell, C. T., and Thomsen, M. F. (1992). Slow mode transition in the frontside magnetosheath. J. Geophys. Res., 97(A6), 8295–8305. https://doi.org/10.1029/92JA00381

Song, P., Russell, C. T., and Gary, S. P. (1994). Identification of low-frequency fluctuations in the terrestrial magnetosheath. J. Geophys. Res., 99(A4), 6011–6025. https://doi.org/10.1029/93JA03300

Stasiewicz, K. (2004). Theory and observations of slow-mode solitons in space plasmas. Phys. Rev. Lett., 93(12), 125004. https://doi.org/10.1103/PhysRevLett.93.125004

Stawarz, J. E., Eastwood, J. P., Genestreti, K. J., Nakamura, R., Ergun, R. E., Burgess, D., Burch, J. L., Fuselier, S. A., Gershman, D. J., … Torbert, R. B. (2018). Intense electric fields and electron-scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale mission. Geophys. Res. Lett., 45(17), 8783–8792. https://doi.org/10.1029/2018GL079095

Sun, W. J., Shi, Q. Q., Fu, S. Y., Pu, Z. Y., Dunlop, M. W., Walsh, A. P., Zong, Q.-G., Xiao, T., Tang, C. L., … Fazakerley, A. (2012). Cluster and TC-1 observation of magnetic holes in the plasma sheet. Ann. Geophys., 30(3), 583–595. https://doi.org/10.5194/angeo-30-583-2012

Sun, W. J., Slavin, J. A., Tian, A. M., Bai, S. C., Poh, G. K., Akhavan-Tafti, M., Lu, S., Yao, S. T., Le, G., … Burch, J. L. (2019). MMS study of the structure of ion-scale flux ropes in the Earth's cross-tail current sheet. Geophys. Res. Lett., 46(12), 6168–6177. https://doi.org/10.1029/2019GL083301

Sundberg, T., Burgess, D., and Haynes, C. T. (2015). Properties and origin of subproton-scale magnetic holes in the terrestrial plasma sheet. J. Geophys. Res., 120(4), 2600–2615. https://doi.org/10.1002/2014JA020856

Tian, A. M., Shi, Q. Q., Degeling A. W., Bai, S. C., Yao, S. T., and Zhang, S. (2018). Analytical model test of methods to find the geometry and velocity of magnetic structures. Sci. China Technol. Sci., 62(6), 1003–1014. https://doi.org/10.1007/s11431-018-9350-1

Tian, A. M., Xiao, K., Degeling, A. W., Shi, Q. Q., Park, J. S., Nowada, M., and Pitkänen, T. (2020). Reconstruction of plasma structure with anisotropic pressure: application to Pc5 compressional wave. Astrophys. J., 889(1), 35. https://doi.org/10.3847/1538-4357/ab6296

Treumann, R. A., and Baumjohann, W. (2019). Electron pairing in mirror modes: surpassing the quasi-linear limit. Ann. Geophys., 37(4), 971–988. https://doi.org/10.5194/angeo-37-971-2019

Tsurutani, B. T., Lakhina, G. S., Verkhoglyadova, O. P., Echer, E., Guarnieri, F. L., Narita, Y., and Constantinescu, D. O. (2011). Magnetosheath and heliosheath mirror mode structures, interplanetary magnetic decreases, and linear magnetic decreases: differences and distinguishing features. J. Geophys. Res., 116(A2), A02103. https://doi.org/10.1029/2010JA015913

Turner, J. M., Burlaga, L. F., Ness, N. F., and Lemaire, J. F. (1977). Magnetic holes in the solar wind. J. Geophys. Res., 82(13), 1921–1924. https://doi.org/10.1029/JA082i013p01921

Wang, G. Q., Zhang, T. L., Wu, M. Y., Schmid, D., Hao, Y. F., and Volwerk, M. (2020a). Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric Multiscale observations. Ann. Geophys., 38(2), 309–318. https://doi.org/10.5194/angeo-38-309-2020

Wang, G. Q., Zhang, T. L., Wu, M. Y., Hao, Y. F., Xiao, S. D., Wang, G., et al. (2020b). Study of the electron velocity inside sub-ion-scale magnetic holes in the solar wind by MMS observations. J. Geophys. Res., 125, e2020JA028386. https://doi.org/10.1029/2020JA028386

Wang, G. Q., Zhang, T. L., Xiao, S. D., Wu, M. Y., Wang, G., Liu, L. J., et al. (2020c). Statistical properties of sub-ion magnetic holes in the solar wind at 1 AU. J. Geophys. Res., 125, e2020JA028320. https://doi.org/10.1029/2020JA028320

Wang, G. Q., Volwerk, M., Xiao, S. D., Wu, M. Y., Hao, Y. F., Liu, L. J., Wang, G., Chen, Y. Q., and Zhang, T. L. (2020d). Three-dimensional Geometry of the Electron-scale Magnetic Hole in the Solar Wind. Astrophys. J. Lett., 904, L11. https://doi.org/10.3847/2041-8213/abc553

Wang, M. M., Yao, S. T., Shi, Q. Q., Zhang, H., Tian, A. M., Degeling, A. W., Zhang, S., Guo, R. L., Sun, W. J., … Pu, Z. Y. (2020). Propagation properties of foreshock cavitons: cluster observations. Sci. China Technol. Sci., 63(1), 173–182. https://doi.org/10.1007/s11431-018-9450-3

Wang, S. M., Wang, R. S., Yao, S. T., Lu, Q. M., Russell, C. T., and Wang, S. (2019). Anisotropic electron distributions and whistler waves in a series of the flux transfer events at the magnetopause. J. Geophys. Res., 124(3), 1753–1769. https://doi.org/10.1029/2018JA026417

Xiao, T., Zhang, H., Shi, Q. Q., Zong, Q.-G., Fu, S. Y., Tian, A. M., Sun, W. J., Wang, S., Parks, G. K., … Dandouras, I. (2015). Propagation characteristics of young hot flow anomalies near the bow shock: cluster observations. J. Geophys. Res., 120(6), 4142–4154. https://doi.org/10.1002/2015JA021013

Yao, S. T., Shi, Q. Q., Li, Z. Y., Wang, X. G., Tian, A. M., Sun, W. J., Hamrin, M., Wang, M. M., Pitkänen, T., … Rème, H. (2016). Propagation of small size magnetic holes in the magnetospheric plasma sheet. J. Geophys. Res., 121(6), 5510–5519. https://doi.org/10.1002/2016JA022741

Yao, S. T., Wang, X. G., Shi, Q. Q., Pitkänen, T., Hamrin, M., Yao, Z. H., Li, Z. Y., Ji, X. F., De Spiegeleer, A., … Liu, J. (2017). Observations of kinetic-size magnetic holes in the magnetosheath. J. Geophys. Res., 122(2), 1999–2000. https://doi.org/10.1002/2016JA023858

Yao, S. T., Shi, Q. Q., Guo, R. L., Yao, Z. H., Tian, A. M., Degeling, A. W., Sun, W. J., Liu, J., Wang, X. G., … Liu, H. (2018a). Magnetospheric Multiscale observations of electron scale magnetic peak. Geophys. Res. Lett., 45(2), 527–537. https://doi.org/10.1002/2017GL075711

Yao, S. T., Shi, Q. Q., Liu, J., Yao, Z. H., Guo, R. L., Ahmadi, N., Degeling, A. W., Zong, Q.-G., Wang, X. G., … Giles, B. L. (2018b). Electron dynamics in magnetosheath mirror-mode structures. J. Geophys. Res., 123(7), 5561–5570. https://doi.org/10.1029/2018JA025607

Yao, S. T., Shi, Q. Q., Yao, Z. H., Li, J. X., Yue, C., Tao, X., Degeling, A. W., Zong, Q.-G., Wang, X. G., … Giles, B. L. (2019a). Waves in kinetic-scale magnetic dips: MMS observations in the magnetosheath. Geophys. Res. Lett., 46(2), 523–533. https://doi.org/10.1029/2018GL080696

Yao, S. T., Shi, Q. Q., Yao, Z. H., Guo, R. L., Zong, Q.-G., Wang, X. G., Degeling, A. W., Rae, I. J., Russell, C. T., and Tian, A. M. (2019b). Electron mirror-mode structure: magnetospheric multiscale observations. Astrophys. J. Lett., 881(2), L31. https://doi.org/10.3847/2041-8213/ab3398

Yao, S. T., Hamrin, M., Shi, Q. Q., Yao, Z. H., Degeling, A. W., Zong, Q.-G., Liu, H., Tian, A. M., Liu, J., … Giles, B. L. (2020a). Propagating and dynamic properties of magnetic dips in the dayside magnetosheath: MMS observations. J. Geophys. Res., 124(6), e2019JA026736. https://doi.org/10.1029/2019JA026736

Yao, S. T., Shi, Q. Q., Guo, R. L., Yao, Z. H., Fu, H. S., Degeling, A. W., Zong, Q.-G., Wang, X. G., Russell, C. T., … Giles, B. L. (2020b). Kinetic-scale flux rope in the magnetosheath boundary layer. Astrophys. J., 897(2), 137. https://doi.org/10.3847/1538-4357/ab9620

Zhang, L., He, J. S., Zhao, J. S., Yao, S., and Feng, X. S. (2018). Nature of magnetic holes above ion scales: a mixture of stable slow magnetosonic and unstable mirror modes in a double-polytropic scenario?. Astrophys. J., 864(1), 35. https://doi.org/10.3847/1538-4357/aad4aa

Zhang, T. L., Russell, C. T., Baumjohann, W., Jian, L. K., Balikhin, M. A., Cao, J. B., Wang, C., Blanco-Cano, X., Glassmeier, K. H., … Vörös, Z. (2008). Characteristic size and shape of the mirror mode structures in the solar wind at 0.72 AU. Geophys. Res. Lett., 35(10), L10106. https://doi.org/10.1029/2008GL033793

Zhang, X. J., Artemyev, A., Angelopoulos, V., and Horne, R. B. (2017). Kinetics of sub-ion scale magnetic holes in the near-Earth plasma sheet. J. Geophys. Res., 122(10), 10304–10317. https://doi.org/10.1002/2017JA024197

Zhong, Z. H., Zhou, M., Huang, S. Y., Tang, R. X., Deng, X. H., Pang, Y., and Chen, H. T. (2019). Observations of a kinetic-scale magnetic hole in a reconnection diffusion region. Geophys. Res. Lett., 46(12), 6248–6257. https://doi.org/10.1029/2019GL082637

Zong, Q.-G., Fritz, T. A., Spence, H., Oksavik, K., Pu, Z. Y., Korth, A., and Daly, P. W. (2004). Energetic particle sounding of the magnetopause: a contribution by Cluster/RAPID. J. Geophys. Res, 109(A4), A04207. https://doi.org/10.1029/2003JA009929

[1]

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012

[2]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[3]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[4]

HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019

[5]

ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics. doi: 10.26464/epp2022041

[6]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[7]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[8]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[9]

YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030

[10]

SuPing Duan, Chi Wang, Weining William Liu, ZhaoHai He, 2021: Characteristics of magnetic dipolarizations in the vicinity of the substorm onset region observed by THEMIS, Earth and Planetary Physics, 5, 239-250. doi: 10.26464/epp2021031

[11]

ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037

[12]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[13]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[14]

XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017

[15]

Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022

[16]

MoRan Liu, Chen Zhou, Ting Feng, Xiang Wang, ZhengYu Zhao, 2022: Numerical study on matching conditions of Langmuir parametric instability and the formation of Langmuir turbulence in ionospheric heating, Earth and Planetary Physics. doi: 10.26464/epp2022043

[17]

ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011

[18]

Jing Huang, Meng Zhou, HuiMin Li, XiaoHua Deng, Jiang Liu, ShiYong Huang, 2019: Small-scale dipolarization fronts in the Earth′s magnetotail, Earth and Planetary Physics, 3, 358-364. doi: 10.26464/epp2019036

[19]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[20]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Statistical properties of kinetic-scale magnetic holes in terrestrial space

ShuTao Yao, ZongShun Yue, QuanQi Shi, Alexander William Degeling, HuiShan Fu, AnMin Tian, Hui Zhang, Andrew Vu, RuiLong Guo, ZhongHua Yao, Ji Liu, Qiu-Gang Zong, XuZhi Zhou, JingHuan Li, WenYa Li, HongQiao Hu, YangYang Liu, WeiJie Sun