Citation:
Huang, F. Q., Lei, J. H., Xiong, C., Zhong, J. H., and Li, G. Z. (2021). Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016. Earth Planet. Phys., 5(5), 416–426. http://doi.org/10.26464/epp2021043
2021, 5(5): 416-426. doi: 10.26464/epp2021043
Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016
1. | Chinese Academy of Sciences Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China |
2. | Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei 230026, China |
3. | Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China |
4. | Electronic Information School, Wuhan University, Wuhan 430072, China |
5. | Planetary Environmental and Astrobiological Research Laboratory, School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China |
6. | Chinese Academy of Sciences Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
7. | Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China |
We investigated the variations of equatorial plasma bubbles (EPBs) in the East-Asian sector during a strong geomagnetic storm in October 2016, based on observations from the Beidou geostationary (GEO) satellites, Swarm satellite and ground-based ionosonde. Significant nighttime depletions of F region in situ electron density from Swarm and obvious nighttime EPBs in the Beidou GEO observations were observed on 13 October 2016 during the main phase. Moreover, one interesting feature is that the rare and unique sunrise EPBs were triggered on 14 October 2016 in the main phase rather than during the recovery phase as reported by previous studies. In addition, the nighttime EPBs were suppressed during the whole recovery phase, and absent from 14 to 19 October 2016. Meanwhile, the minimum virtual height of F trace (h’F) at Sanya (18.3°N, 109.6°E, MLAT 11.1°N) displayed obvious changes during these intervals. The h’F was enhanced in the main phase and declined during the recovery phase, compared with the values at pre- and post-storm. These results indicate that the enhanced nighttime EPBs and sunrise EPBs during the main phase and the absence nighttime EPBs for many days during the recovery phase could be associated with storm-time electric field changes.
Abdu, M. A. (1997). Major phenomena of the equatorial ionosphere-thermosphere system under disturbed conditions. J. Atmos. Sol.-Terr. Phys., 59(13), 1505–1519. https://doi.org/10.1016/S1364-6826(96)00152-6 |
Abdu, M. A. (2001). Outstanding problems in the equatorial ionosphere-thermosphere electrodynamics relevant to spread F. J. Atmos. Sol.–Terr. Phys., 63(9), 869–884. https://doi.org/10.1016/S1364-6826(00)00201-7 |
Anderson, D. N. (1976). Modeling the midlatitude F-region ionospheric storm using east-west drift and a meridional wind. Planet. Space Sci., 24(1), 69–77. https://doi.org/10.1016/0032-0633(76)90063-5 |
Blanc, M., and Richmond, A. D. (1980). The ionospheric disturbance dynamo. J. Geophys. Res.: Space Phys., 85(A4), 1669–1686. https://doi.org/10.1029/JA085iA04p01669 |
Booker, H. G., and Wells, H. W. (1938). Scattering of radio waves by the F-region of the ionosphere. Terr. Magn. Atmos. Electr., 43(3), 249–256. https://doi.org/10.1029/TE043i003p00249 |
Burke, W. J., Gentile, L. C., Huang, C. Y., Valladares, C. E., and Su, S. Y. (2004). Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT-1. J. Geophys. Res.: Space Phys., 109(A12), A12301. https://doi.org/10.1029/2004JA010583 |
Carter, B. A., Yizengaw, E., Pradipta, R., Retterer, J. M., Groves, K., Valladares, C., Caton, R., Bridgwood, C., Norman, R., and Zhang, K. (2016). Global equatorial plasma bubble occurrence during the 2015 St. Patrick's Day storm. J. Geophys. Res.: Space Phys., 121(1), 894–905. https://doi.org/10.1002/2015JA022194 |
Cherniak, I., and Zakharenkova, I. (2016). First observations of super plasma bubbles in Europe. Geophys. Res. Lett., 43(21), 11137–11145. https://doi.org/10.1002/2016GL071421 |
Fejer, B. G., and Scherliess, L. (1997). Empirical models of storm time equatorial zonal electric fields. J. Geophys. Res.: Space Phys., 102(A11), 24047–24056. https://doi.org/10.1029/97JA02164 |
Fejer, B. G., Emmert, J. T., and Sipler, D. P. (2002). Climatology and storm time dependence of nighttime thermospheric neutral winds over Millstone Hill. J. Geophys. Res.: Space Phsy., 107(A5), SIA 3-1–SIA 3-9. https://doi.org/10.1029/2001JA000300 |
Fejer, B. G., Jensen, J. W., and Su, S. Y. (2008). Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys. Res. Lett., 35(20), L20106. https://doi.org/10.1029/2008GL035584 |
Fukao, S., Ozawa, Y., Yamamoto, M., and Tsunoda, R. T. (2003). Altitude-extended equatorial spread F observed near sunrise terminator over Indonesia. Geophys. Res. Lett., 30(22), 2137. https://doi.org/10.1029/2003GL018383 |
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M. (1994). What is a geomagnetic storm?. J. Geophys. Res.: Space Phys., 99(A4), 5771–5792. https://doi.org/10.1029/93JA02867 |
Haerendel, G., Eccles, J. V., and Çakir, S. (1992). Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow. J. Geophys. Res.: Space Phys., 97(A2), 1209–1223. https://doi.org/10.1029/91JA02226 |
Huang, C. S., and Kelley, M. C. (1996). Nonlinear evolution of equatorial spread F: 2. Gravity wave seeding of Rayleigh–Taylor instability. J. Geophys. Res.: Space Phys., 101(A1), 293–302. https://doi.org/10.1029/95JA02210 |
Huang, C. S., de La Beaujardiere, O., Roddy, P. A., Hunton, D. E., Ballenthin, J. O., and Hairston, M. R. (2013). Long-lasting daytime equatorial plasma bubbles observed by the C/NOFS satellite. J. Geophys. Res.: Space Phys., 118(5), 2398–2408. https://doi.org/10.1002/jgra.50252 |
Huang, F. Q., Lei, J. H., and Dou, X. K. (2017). Daytime ionospheric longitudinal gradients seen in the observations from a regional BeiDou GEO receiver network. J. Geophys. Res.: Space Phys., 122(6), 6552–6561. https://doi.org/10.1002/2017JA023881 |
Huang, F. Q., Lei, J. H., Dou, X. K., Luan, X. L., and Zhong, J. H. (2018). Nighttime medium-scale traveling ionospheric disturbances from airglow imager and Global Navigation Satellite Systems observations. Geophys. Res. Lett., 45(1), 31–38. https://doi.org/10.1002/2017GL076408 |
Huang, F. Q., Otsuka, Y., Lei, J. H., Luan, X. L., Dou, X. K., and Li, G. Z. (2019). Daytime periodic wave-like structures in the ionosphere observed at low latitudes over the Asian-Australian sector using total electron content from Beidou geostationary satellites. J. Geophys. Res.: Space Phys., 124(3), 2312–2322. https://doi.org/10.1029/2018JA026443 |
Huang, F. Q., Lei, J. H., Otsuka, Y., Luan, X. L., Liu, Y., Zhong, J. H., and Dou, X. K. (2021). Characteristics of medium-scale traveling ionospheric disturbances and ionospheric irregularities at mid-latitudes revealed by the total electron content associated with the beidou geostationary satellite. IEEE Trans. Geosci. Remote Sens., 59(8), 6424–6430. https://doi.org/10.1109/TGRS.2020.3032741 |
Huba, J. D., Joyce, G., and Krall, J. (2008). Three-dimensional equatorial spread F modeling. Geophys. Res. Lett., 35(10), L10102. https://doi.org/10.1029/2008GL033509 |
Hysell, D. L. (2000). An overview and synthesis of plasma irregularities in equatorial spread F. J. Atmos. Sol.-Terr. Phys., 62(12), 1037–1056. https://doi.org/10.1016/S1364-6826(00)00095-X |
Jiang, C. H., Yang, G. B., Liu, J., Yokoyama, T., Komolmis, T., Song, H., Lan, T., Zhou, C., Zhang, Y. N., and Zhao, Z. Y. (2016). Ionosonde observations of daytime spread F at low latitudes. J. Geophys. Res.: Space Phys., 121(12), 12093–12103. https://doi.org/10.1002/2016JA023123 |
Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics (2nd ed). San Diego, CA: Academic Press.222 |
Krall, J., Huba, J. D., and Fritts, D. C. (2013). On the seeding of equatorial spread F by gravity waves. Geophys. Res. Lett., 40(4), 661–664. https://doi.org/10.1002/grl.50144 |
Lei, J. H., Wang, W. B., Burns, A. G., Solomon, S. C., Richmond, A. D., Wiltberger, M., Goncharenko, L. P., Coster, A., and Reinisch, B. W. (2008). Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. J. Geophys. Res.: Space Phys., 113(A1), A01314. https://doi.org/10.1029/2007JA012807 |
Lei, J. H., Huang, F. Q., Chen, X. T., Zhong, J. H., Ren, D. X., Wang, W. B., et al. (2018). Was magnetic storm the only driver of the long-duration enhancements of daytime total electron content in the Asian-Australian sector between 7 and 12 September 2017?. J. Geophys. Res.: Space Phys., 123, 3217–3232. https://doi.org/10.1029/2017JA025166 |
Li, G. Z., Ning, B. Q., Hu, L. H., Liu, L. B., Yue, X. N., Wan, W. X., Zhao, B. Q., Igarashi, K., Kubota, M., … Liu, J. Y. (2010). Longitudinal development of low‐latitude ionospheric irregularities during the geomagnetic storms of July 2004. J. Geophys. Res.: Space Phys., 115(A4), A04304. https://doi.org/10.1029/2009JA014830 |
Li, G. Z., Otsuka, Y., Ning, B. Q., Abdu, M. A., Yamamoto, M., Wan, W. X., Liu, L. B., and Abadi, P. (2016). Enhanced ionospheric plasma bubble generation in more active ITCZ. Geophys. Res. Lett., 43(6), 2389–2395. https://doi.org/10.1002/2016GL068145 |
Li, G. Z., Ning, B. Q., Wang, C., Abdu, M. A., Otsuka, Y., Yamamoto, M., Wu, J., and Chen, J. S. (2018). Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120°E/60°W on 7−8 September 2017. J. Geophys. Res.: Space Phys., 123(9), 7985–7998. https://doi.org/10.1029/2018JA025871 |
Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., Yeh, H. C., and Su, S. Y. (2005). Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. J. Geophys. Res.: Space Phys., 110(A12), A12312. https://doi.org/10.1029/2005JA011304 |
Luo, W. H., Xiong, C., Xu, J. S., Zhu, Z., and Chang, S. S. (2020). The low-latitude plasma irregularities after sunrise from multiple observations in both hemispheres during the recovery phase of a storm. Remote Sens., 12(18), 2897. https://doi.org/10.3390/rs12182897 |
Ma, G. Y., and Maruyama, T. (2006). A super bubble detected by dense GPS network at east Asian longitudes. Geophys. Res. Lett., 33(21), L21103. https://doi.org/10.1029/2006GL027512 |
Makela, J. J., and Otsuka, Y. (2012). Overview of nighttime ionospheric instabilities at low- and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev., 168(1), 419–440. https://doi.org/10.1007/s11214-011-9816-6 |
Nayak C., Tsai, L. C., Su, S. Y., Galkin, I. A., Caton, R. G., and Groves, K. M. (2017). Suppression of ionospheric scintillation during St. Patrick’s Day geomagnetic super storm as observed over the anomaly crest region station Pingtung, Taiwan: A case study. Adv. Space Res., 60(2), 396–405. https://doi.org/10.1016/j.asr.2016.11.036 |
Nishioka, M., Saito, A., and Tsugawa, T. (2008). Occurrence characteristics of plasma bubble derived from global ground-based GPS receiver networks. J. Geophys. Res.: Space Phys., 113(A5), A05301. https://doi.org/10.1029/2007JA012605 |
Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P. (2002). Geomagnetic conjugate observations of equatorial airglow depletions. Geophys. Res. Lett., 29(15), 43-1–43-4. https://doi.org/10.1029/2002GL015347 |
Pi, X., Mannucci, A. J., Lindqwister, U. J., and Ho, C. M. (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett., 24(18), 2283–2286. https://doi.org/10.1029/97GL02273 |
Richmond, A. D., and Lu, G. (2000). Upper-atmospheric effects of magnetic storms: A brief tutorial. J. Atmos. Sol.‐Terr. Phys., 62(12), 1115–1127. https://doi.org/10.1016/S1364-6826(00)00094-8 |
Sripathi, S., Abdu, M. A., Patra, A. K., and Ghodpage, R. N. (2018). Unusual generation of localized EPB in the dawn sector triggered by a moderate geomagnetic storm. J. Geophys. Res.: Space Phys., 123(11), 9697–9710. https://doi.org/10.1029/2018JA025642 |
Tulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Gopi Krishna, S., Sridharan, R., and Ravindran, S. (2008). Local time dependent response of postsunset ESF during geomagnetic storms. J. Geophys. Res.: Space Phys., 113(A7), A07310. https://doi.org/10.1029/2007JA012922 |
Tulasi Ram, S., Ajith, K. K., Yamamoto, M., Otsuka, Y., Yokoyama, T., Niranjan, K., and Gurubaran, S. (2015). Fresh and evolutionary-type field-aligned irregularities generated near sunrise terminator due to overshielding electric fields. J. Geophys. Res.: Space Phys., 120(7), 5922–5930. https://doi.org/10.1002/2015JA021427 |
Wan, X., Xiong, C., Wang, H., Zhang, K. D., Zheng, Z. C., He, Y., and Yu, L. (2019). A statistical study on the climatology of the Equatorial Plasma Depletions occurrence at topside ionosphere during geomagnetic disturbed periods. J. Geophys. Res.: Space Phys., 124(10), 8023–8038. https://doi.org/10.1029/2019JA026926 |
Wu, K., Xu, J. Y., Yue, X. N., Xiong, C., Wang, W. B., Yuan, W., Wang, C., Zhu, Y., and Luo, J. (2020). Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and global navigation satellite system network during storm time. Ann. Geophys., 38(1), 163–177. https://doi.org/10.5194/angeo-38-163-2020 |
Xiong, C., Lühr, H., and Fejer, B. G. (2015). Global features of the disturbance winds during storm time deduced from CHAMP observations. J. Geophys. Res.: Space Phys., 120(6), 5137–5150. https://doi.org/10.1002/2015JA021302 |
Xiong, C., Stolle, C., and Lühr, H. (2016). The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities. Space Wea., 14(8), 563–577. https://doi.org/10.1002/2016SW001439 |
Yokoyama, T., Shinagawa, H., and Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res.: Space Phys., 119(12), 10474–10482. https://doi.org/10.1002/2014JA020708 |
Zalesak, S. T., and Ossakow, S. L. (1980). Nonlinear equatorial spread F: Spatially large bubbles resulting from large horizontal scale initial perturbations. J. Geophys. Res.: Space Phys., 85(A5), 2131–2142. https://doi.org/10.1029/JA085iA05p02131 |
[1] |
Xin Ma, Zheng Xiang, BinBin Ni, Song Fu, Xing Cao, Man Hua, DeYu Guo, YingJie Guo, XuDong Gu, ZeYuan Liu, Qi Zhu, 2020: On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm, Earth and Planetary Physics, 4, 598-610. doi: 10.26464/epp2020060 |
[2] |
Claudio Cesaroni, Luca Spogli, Giorgiana De Franceschi, Juliana Garrido Damaceno, Marcin Grzesiak, Bruno Vani, Joao Francisco Galera Monico, Vincenzo Romano, Lucilla Alfonsi, Massimo Cafaro, 2021: A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes, Earth and Planetary Physics, 5, 450-461. doi: 10.26464/epp2021042 |
[3] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[4] |
Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025 |
[5] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[6] |
ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011 |
[7] |
Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023 |
[8] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[9] |
XueMin Zhang, Vladimir Frolov, ShuFan Zhao, Chen Zhou, YaLu Wang, Alexander Ryabov, DuLin Zhai, 2018: The first joint experimental results between SURA and CSES, Earth and Planetary Physics, 2, 527-537. doi: 10.26464/epp2018051 |
[10] |
Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046 |
[11] |
Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051 |
[12] |
Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025 |
[13] |
JianPing Huang, JunGang Lei, ShiXun Li, ZhiMa Zeren, Cheng Li, XingHong Zhu, WeiHao Yu, 2018: The Electric Field Detector (EFD) onboard the ZH-1 satellite and first observational results, Earth and Planetary Physics, 2, 469-478. doi: 10.26464/epp2018045 |
[14] |
Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012 |
[15] |
QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036 |
[16] |
ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035 |
[17] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[18] |
YuanZheng Wen, Dan Tao, GuangXue Wang, JiaYi Zong, JinBin Cao, Roberto Battiston, ZhiMa ZeRen, XuHui Shen, 2022: Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data, Earth and Planetary Physics, 6, 313-328. doi: 10.26464/epp2022028 |
[19] |
Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052 |
[20] |
Xu Zhou, XinAn Yue, Han-Li Liu, Yong Wei, YongXin Pan, 2021: Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations, Earth and Planetary Physics, 5, 327-336. doi: 10.26464/epp2021040 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)