Citation:
Hu, X. W., Wang, G. Q., and Pan, Z. H (2022). Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method. Earth Planet. Phys., 6(1), 52–60. http://doi.org/10.26464/epp2022017
2022, 6(1): 52-60. doi: 10.26464/epp2022017
Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method
1. | Chinese Academy of Sciences Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China |
2. | Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen 518055, China |
The space-borne fluxgate magnetometer (FGM) requires regular in-flight calibration to obtain its zero offset. Recently, Wang GQ and Pan ZH (2021a) developed a new method for the zero offset calibration based on the properties of Alfvén waves. They found that an optimal offset line (OOL) exists in the offset cube for a pure Alfvén wave and that the zero offset can be determined by the intersection of at least two nonparallel OOLs. Because no pure Alfvén waves exist in the interplanetary magnetic field, calculation of the zero offset relies on the selection of highly Alfvénic fluctuation events. Here, we propose an automatic procedure to find highly Alfvénic fluctuations in the solar wind and calculate the zero offset. This procedure includes three parts: (1) selecting potential Alfvénic fluctuation events, (2) obtaining the OOL, and (3) determining the zero offset. We tested our automatic procedure by applying it to the magnetic field data measured by the FGM onboard the Venus Express. The tests revealed that our automatic procedure was able to achieve results as good as those determined by the Davis–Smith method. One advantage of our procedure is that the selection criteria and the process for selecting the highly Alfvénic fluctuation events are simpler. Our automatic procedure could also be applied to find fluctuation events for the Davis–Smith method.
Acuña, M. H. (2002). Space-based magnetometers. Rev. Sci. Instrum., 73(11), 3717–3736. https://doi.org/10.1063/1.1510570 |
Artemyev, A. V., Angelopoulos, V., Vasko, I. Y., Runov, A., Avanov, L. A., Giles, B. L., and Russell, C. T., and Strangeway, R. J. (2019). On the kinetic nature of solar wind discontinuities. Geophys. Res. Lett., 46(3), 1185–1194. https://doi.org/10.1029/2018gl079906 |
Balogh, A. (2010). Planetary magnetic field measurements: missions and instrumentation. Space Sci. Rev., 152(1-4), 23–97. https://doi.org/10.1007/s11214-010-9643-1 |
Belcher, J. W. (1973). A variation of the Davis–Smith method for in-flight determination of spacecraft magnetic fields. J. Geophys. Res., 78(28), 6480–6490. https://doi.org/10.1029/JA078i028p06480 |
Burch, J. L., Moore, T. E., Torbert, R. B., and Giles, B. L. (2016). Magnetospheric Multiscale overview and science objectives. Space Sci. Rev., 199(1-4), 5–21. https://doi.org/10.1007/s11214-015-0164-9 |
Davis, L., and Smith, E. J. (1968). The in-flight determination of spacecraft magnetic field zeros. Eos, Trans. Am. Geophys. Union, 49, 257.222 |
Duan, A. Y., Zhang, H., and Lu, H. Y. (2018). 3D MHD simulation of the double-gradient instability of the magnetotail current sheet. Sci. China Technol. Sci., 61(9), 1364–1371. https://doi.org/10.1007/s11431-017-9158-7 |
Ge, Y. S., McFadden, J. P., Raeder, J., Angelopoulos, V., Larson, D., and Constantinescu, O. D. (2011). Case studies of mirror-mode structures observed by THEMIS in the near-Earth tail during substorms. J. Geophys. Res., 116(A1), A01209. https://doi.org/10.1029/2010ja015546 |
Hedgecock, P. C. (1975). A correlation technique for magnetometer zero level determination. Space Sci. Instrum., 1(1), 83–90. |
Hellinger, P., Landi, S., Matteini, L., Verdini, A., and Franci, L. (2017). Mirror instability in the turbulent solar wind. Astrophys. J., 838(2), 158. https://doi.org/10.3847/1538-4357/aa67e0 |
Huang, S. Y., Sahraoui, F., Yuan, Z. G., Le Contel, O., Breuillard, H., He, J. S., Zhao, J. S., Fu, H. S., Zhou, M., … Deng, X. H. (2018). Observations of whistler waves correlated with electron-scale coherent structures in the magnetosheath turbulent plasma. Astrophys. J., 861(1), 29. https://doi.org/10.3847/1538-4357/aac831 |
Keiling, A. (2009). Alfvén waves and their roles in the dynamics of the Earth’s magnetotail: A review. Space Sci. Rev., 142(1-4), 73–156. https://doi.org/10.1007/s11214-008-9463-8 |
Leinweber, H. K., Russell, C. T., Torkar, K., Zhang, T. L., and Angelopoulos, V. (2008). An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. Meas. Sci. Technol., 19(5), 055104. https://doi.org/10.1088/0957-0233/19/5/055104 |
Li, H., Wang, C., Chao, J. K., and Hsieh, W. C. (2016). A new approach to identify interplanetary Alfvén waves and to obtain their frequency properties. J. Geophys. Res., 121(1), 42–55. https://doi.org/10.1002/2015ja021749 |
Liu, K., Hao, X. J., Li, Y. R., Zhang, T. L., Pan, Z. H., Chen, M. M., Hu, X. W., Li, X., Shen, C. L., and Wang, Y. M. (2020). Mars orbiter magnetometer of China’s first Mars mission Tianwen-1. Earth Planet. Phys., 4(4), 384–389. https://doi.org/10.26464/epp2020058 |
Lu, S., Wang, R. S., Lu, Q. M., Angelopoulos, V., Nakamura, R., Artemyev, A. V., Pritchett, P. L., Liu, T. Z., Zhang, X. J., … Wang, S. (2020). Magnetotail reconnection onset caused by electron kinetics with a strong external driver. Nat. Commun., 11(1), 5049. https://doi.org/10.1038/s41467-020-18787-w |
Meng, L. F., Pan, Z. H., Yi, Z., Wang, G. Q., and Zhang, T. L. (2018). Error properties of the fluxgate magnetometer offset based on Davis–Smith method. Chin. J. Geophys., 61(9), 3545–3551. https://doi.org/10.6038/cjg2018L0264 |
Neukirch, T., Vasko, I. Y., Artemyev, A. V., and Allanson, O. (2020). Kinetic models of tangential discontinuities in the solar wind. Astrophys. J., 891(1), 86. https://doi.org/10.3847/1538-4357/ab7234 |
Olsen, N., Tøffner-Clausen, L., Sabaka, T. J., Brauer, P., Merayo, J. M. G., Jorgensen, J. L., Léger, J. M., Nielsen, O. V., Primdahl, F., and Risbo, T. (2003). Calibration of the Ørsted vector magnetometer. Earth Planets Space, 55(1), 11–18. https://doi.org/10.1186/Bf03352458 |
Pan, Z. H., Wang, G. Q., Meng, L. F., Yi, Z., and Zhang, T. L. (2019). Influence of Alfvénic characteristics on calibration of satellite magnetometer. Chin. J. Geophys., 62(4), 1193–1198. https://doi.org/10.6038/cjg2019M0513 |
Plaschke, F., and Narita, Y. (2016). On determining fluxgate magnetometer spin axis offsets from mirror mode observations. Ann. Geophys., 34(9), 759–766. https://doi.org/10.5194/angeo-34-759-2016 |
Plaschke, F., Goetz, C., Volwerk, M., Richter, I., Fruhauff, D., Narita, Y., Glassmeier, K. H., and Dougherty, M. K. (2017). Fluxgate magnetometer offset vector determination by the 3D mirror mode method. Monthly Notices of the Royal Astronomical Society, 469(Suppl_2), S675–S684. https://doi.org/10.1093/mnras/stx2532 |
Plaschke, F. (2019). How many solar wind data are sufficient for accurate fluxgate magnetometer offset determinations. Geosci. Instrum. Methods Data Syst., 8(2), 285–291. https://doi.org/10.5194/gi-8-285-2019 |
Pope, S. A., Zhang, T. L., Balikhin, M. A., Delva, M., Hvizdos, L., Kudela, K., and Dimmock, A. P. (2011). Exploring planetary magnetic environments using magnetically unclean spacecraft: a systems approach to VEX MAG data analysis. Ann. Geophys., 29(4), 639–647. https://doi.org/10.5194/angeo-29-639-2011 |
Pudney, M. A., Carr, C. M., Schwartz, S. J., and Howarth, S. I. (2012). Automatic parameterization for magnetometer zero offset determination. Geosci. Instrum. Methods Data Syst., 1(2), 103–109. https://doi.org/10.5194/gi-1-103-2012 |
Risbo, T., Brauer, P., Merayo, J. M. G., Nielsen, O. V., Petersen, J. R., Primdahl, F., and Richter, I. (2003). Ørsted pre-flight magnetometer calibration mission. Meas. Sci. Technol., 14(5), 674–688. https://doi.org/10.1088/0957-0233/14/5/319 |
Russell, C. T., Anderson, B. J., Baumjohann, W., Bromund, K. R., Dearborn, D., Fischer, D., Le, G., Leinweber, H. K., Leneman, D., … Richter, I. (2016). The Magnetospheric Multiscale magnetometers. Space Sci. Rev., 199(1-4), 189–256. https://doi.org/10.1007/s11214-014-0057-3 |
Schmid, D., Plaschke, F., Narita, Y., Heyner, D., Mieth, J. Z. D., Anderson, B. J., Volwerk, M., Matsuoka, A., and Baumjohann, W. (2020). Magnetometer in-flight offset accuracy for the BepiColombo spacecraft. Ann. Geophys., 38(4), 823–832. https://doi.org/10.5194/angeo-38-823-2020 |
Shan, L. C. , Lu, Q. M. , Mazelle, C. , Huang, C. , Zhang, T. L. , Wu, M. Y. , Gao, X. L. , and Wang, S. (2015). The shape of the Venusian bow shock at solar minimum and maximum: revisit based on VEX observations. Planet. Space Sci. , 109–110, 32–37.222 |
Sun, J. C., Gao, X. L., Ke, Y. G., Lu, Q. M., Wang, X. Y., and Wang, S. (2019). Expansion of solar coronal hot electrons in an inhomogeneous magnetic field: 1D PIC simulation. Astrophys. J., 887(1), 96. https://doi.org/10.3847/1538-4357/ab5060 |
Sun, J. C., Chen, L. J., and Wang, X. Y. (2020). Wave normal angle distribution of magnetosonic waves in the earth’s magnetosphere: 2-D PIC simulation. J. Geophys. Res., 125(5), e2020JA028012. https://doi.org/10.1029/2020ja028012 |
Sun, J. C., Wang, G. Q., Zhang, T. L., Hu, H. Q., and Yang, H. G. (2022). Evidence of Alfvén waves generated by mode coupling in the magnetotail lobe. Geophys. Res. Lett., 49(1), e2021GL096359. https://doi.org/10.1029/2021GL096359 |
Titov, D. V., Svedhem, H., Koschny, D., Hoofs, R., Barabash, S., Bertaux, J. L., Drossart, P., Formisano, V., Häusler, B., … Clochet, A. (2006). Venus Express science planning. Planet. Space Sci., 54(13-14), 1279–1297. https://doi.org/10.1016/j.pss.2006.04.017 |
Volwerk, M., Mautner, D., Wedlund, C. S., Goetz, C., Plaschke, F., Karlsson, T., Schmid, D., Rojas-Castillo, D., Roberts, O. W., and Varsani, A. (2021). Statistical study of linear magnetic hole structures near Earth. Ann. Geophys., 39(1), 239–253. https://doi.org/10.5194/angeo-39-239-2021 |
Wang, G. Q., Ge, Y. S., Zhang, T. L., Nakamura, R., Volwerk, M., Baumjohann, W., Du, A. M., and Lu, Q. M. (2015). A statistical analysis of Pi2-band waves in the plasma sheet and their relation to magnetospheric drivers. J. Geophys. Res., 120(8), 6167–6175. https://doi.org/10.1002/2014ja020753 |
Wang, G. Q., Zhang, T. L., and Volwerk, M. (2016). Statistical study on ultralow-frequency waves in the magnetotail lobe observed by Cluster. J. Geophys. Res., 121(6), 5319–5332. https://doi.org/10.1002/2016ja022533 |
Wang, G. Q., Volwerk, M., Zhang, T. L., Schmid, D., and Yoshikawa, A. (2017). High-latitude Pi2 pulsations associated with kink-like neutral sheet oscillations. J. Geophys. Res., 122(3), 2889–2899. https://doi.org/10.1002/2016ja023370 |
Wang, G, Q., Pan, Z. H., Hu, X. W., Liu, K., Meng, L. F., Yi, Z., and Zhang, T. L. (2019). Numerical simulation of influence of compressional fluctuation amplitude on zero correction of satellite magnetometer. Spacecr. Environ. Eng., 36(3), 229–234. https://doi.org/10.12126/see.2019.03.005 |
Wang, G. Q., Volwerk, M., Xiao, S. D., Wu, M. Y., Hao, Y. F., Liu, L. J., Wang, G., Chen, Y. Q., and Zhang, T. L. (2020a). Three-dimensional geometry of the electron-scale magnetic hole in the solar wind. Astrophys. J. Lett., 904(1), L11. https://doi.org/10.3847/2041-8213/abc553 |
Wang, G. Q., Cheng, S. N., Meng, L. F., Yi, Z., Xiao, Q., Pan, Z. H., Hu, X. W., Liu, K., and Zhang, T. L. (2020b). Effect of reference coordinate system on the offset of fluxgate magnetometer based on Davis–Smith method. Spacecr. Environ. Eng., 37(6), 570–575. https://doi.org/10.12126/see.2020.06.006 |
Wang, G. Q., and Pan, Z. H. (2021a). A new method to calculate the fluxgate magnetometer offset in the interplanetary magnetic field: 1. Using Alfvén waves. J. Geophys. Res., 126(4), e2020JA028893. https://doi.org/10.1029/2020ja028893 |
Wang, G. Q., Volwerk, M., Wu, M. Y., Hao, Y. F., Xiao, S. D., Wang, G., Liu, L. J., Chen, Y. Q., and Zhang, T. L. (2021a). First observations of an ion vortex in a magnetic hole in the solar wind by MMS. Astron. J., 161(3), 110. https://doi.org/10.3847/1538-3881/abd632 |
Wang, G. Q., and Pan, Z. H. (2021b). A new method to calculate the fluxgate magnetometer offset in the interplanetary magnetic field: 2. Using mirror mode structures. J. Geophys. Res., 126(9), e2021JA029781. https://doi.org/10.1029/2021ja029781 |
Wang, G. Q., Zhang, T. L., Wu, M. Y., Xiao, S. D., Wang, G., Chen, Y. Q., Sun, J. C., and Volwerk, M. (2021b). Field-aligned currents originating from the chaotic motion of electrons in the tilted current sheet: MMS observations. Geophys. Res. Lett., 48(9), e2020GL088841. https://doi.org/10.1029/2020gl088841 |
Wu, D. J., Feng, H. Q., Li, B., and He, J. S. (2016). Nature of turbulence, dissipation, and heating in space plasmas: from Alfvén waves to kinetic Alfvén waves. J. Geophys. Res., 121(8), 7349–7352. https://doi.org/10.1002/2016ja023082 |
Xiao, S. D., Wu, M. Y., Wang, G. Q., Wang, G., Chen, Y. Q., and Zhang, T. L. (2020a). Turbulence in the near-Venusian space: Venus express observations. Earth Planet. Phys., 4(1), 82–87. https://doi.org/10.26464/epp2020012 |
Xiao, S. D., Zhang, T. L., Vörös, Z., Wu, M. Y., Wang, G. Q., and Chen, Y. Q. (2020b). Turbulence near the Venusian bow shock: Venus Express observations. J. Geophys. Res., 125(2), e2019JA027190. https://doi.org/10.1029/2019JA027190 |
Zhang, T. L., Baumjohann, W., Delva, M., Auster, H. U., Balogh, A., Russell, C. T., Barabash, S., Balikhin, M., Berghofer, G., … Lebreton, J. P. (2006). Magnetic field investigation of the Venus plasma environment: expected new results from Venus Express. Planet. Space Sci., 54(13-14), 1336–1343. https://doi.org/10.1016/j.pss.2006.04.018 |
Zhang, T. L., Lu, Q. M., Baumjohann, W., Russell, C. T., Fedorov, A., Barabash, S., Coates, A. J., Du, A. M., Cao, J. B., … Balikhin, M. (2012). Magnetic reconnection in the near Venusian magnetotail. Science, 336(6081), 567–570. https://doi.org/10.1126/science.1217013 |
[1] |
Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043 |
[2] |
YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043 |
[3] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[4] |
Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044 |
[5] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[6] |
RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018 |
[7] |
A. M. S. Franco, E. Echer, M. J. A. Bolzan, M. Fraenz, 2022: Study of fluctuations in the Martian magnetosheath using a kurtosis technique: Mars Express observations, Earth and Planetary Physics, 6, 28-41. doi: 10.26464/epp2022006 |
[8] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)