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Abstract: In the adjoint-state method, the forward-propagated source wavefield and the backward-propagated receiver wavefield must
be available simultaneously either for seismic imaging in migration or for gradient calculation in inversion. A feasible way to avoid the
excessive storage demand is to reconstruct the source wavefield backward in time by storing the entire history of the wavefield in
perfectly matched layers. In this paper, we make full use of the elementwise global property of the Laplace operator of the spectral
element method (SEM) and propose an efficient source wavefield reconstruction method at the cost of storing the wavefield history only
at single boundary layer nodes. Numerical experiments indicate that the accuracy of the proposed method is identical to that of the
conventional method and is independent of the order of the Lagrange polynomials, the element type, and the temporal discretization
method. In contrast, the memory-saving ratios of the conventional method versus our method is at least N when using either
quadrilateral or hexahedron elements, respectively, where N is the order of the Lagrange polynomials used in the SEM. A higher memory-
saving ratio is achieved with triangular elements versus quadrilaterals. The new method is applied to reverse time migration by
considering the Marmousi model as a benchmark. Numerical results demonstrate that the method is able to provide the same result as
the conventional method but with about 1/25 times lower storage demand. With the proposed wavefield reconstruction method, the
storage demand is dramatically reduced; therefore, in-core memory storage is feasible even for large-scale three-dimensional adjoint
inversion problems.
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1.  Introduction
The adjoint  methods,  such  as  least-squares  reverse  time  migra-
tion (LSRTM) (Tang YX, 2009; Dai W et al., 2011; Wong et al., 2015;
Liu XJ et al., 2016; Liu YS et al., 2016) and full waveform inversion
(FWI)  (Tarantola,  1984; Pratt  and  Shipp,  1999; Tromp  et  al.,  2005;
Fichtner  et  al.,  2006a, 2006b; Plessix,  2009; Virieux  and  Operto,
2009), are  powerful  tools  in  geophysics  that  allow  the  computa-
tion of the first derivative (or gradient) of a physical observation or
an  associated  objective  function,  with  respect  to  its  dependency
parameter, to be achievable (Fichtner et al., 2006a, 2006b; Plessix,
2006; Virieux and Operto, 2009). In adjoint methods, the computa-
tion of the gradient requires both the forward-propagated source
wavefield  and  the  backward-propagated  receiver  wavefield  (or
adjoint  wavefield)  to  be  available  simultaneously  (Tarantola,
1984). The source and receiver wavefields are extrapolated separ-

ately  along  opposite  directions,  which  means  that  the  source
wavefield needs to be saved or reproduced (Dussaud et al., 2008;
Feng B and Wang HZ, 2012). For small-sized problems, the source
wavefields can simply be stored in memory and the gradient can
be computed on the fly,  which is  the  simplest  way to  access  the
source  and  receiver  wavefields  synchronously  (Whitmore  and
Lines,  1986; Sun  WJ  and  Fu  LY,  2013).  However,  the  storage  and
input/output (I/O) requirements for this method become increas-
ingly  demanding  for  data  from  elastic,  multicomponent,  and
three-dimensional  (3-D)  surveys  (Nguyen  and  McMechan,  2014);
therefore, this method is not feasible because the memory cost is
unaffordable.  The above wavefield preservation method (i.e.,  the
storing  of  an  extrapolated  wavefield)  thus  suffers  a  stringent
memory  bottleneck  for  large-scale  3-D  imaging  applications.  A
popular and feasible method of  making the source wavefield ac-
cessible  during  the  receiver  wavefield  extrapolation  is  wavefield
reconstruction, which attempts to reproduce or reconstruct an ex-
trapolated  wavefield  (Gauthier  et  al.,  1986; Dussaud  et  al.,  2008;
Vasmel and Robertsson, 2016).

In the context of wavefield reconstruction methods, an appealing
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method with a minimal storage cost rests on the random bound-
ary  condition  (Clapp,  2009; Fletcher  and  Robertsson,  2011; Shen
XK and Clapp, 2015; Shi Y and Wang YH, 2016). Wave propagation
is reversible in random media (the boundary layers); therefore, the
wavefield can theoretically be reconstructed by requiring only the
last two time-slice wavefield snapshots. However, the main draw-
back is that this may induce additional noise in the gradient of the
adjoint  method,  for  example,  in  the  migration  image  (Liu  HW  et
al.,  2013; Shi  Y  and  Wang  YH,  2016). Furthermore,  it  usually  re-
quires relatively thick boundary layers to obtain a result without a
strong  boundary  reflection. Symes  (2007) proposed  an  efficient
reconstruction of the source wavefield that involved using the op-
timal checkpointing method, in which wavefield snapshots at sev-
eral  time  steps  are  stored  and  later  used  as  initial  data  to  restart
the  wavefield  simulation  (Anderson  et  al.,  2012; Nguyen  and
McMechan, 2014). This method uses a little more storage than the
random boundary  condition,  and  it  can  be  used  even  in  dissip-
ated media without a loss of accuracy (Yang PL et al., 2016a). The
most popular reconstruction method among the wavefield recon-
struction methods uses  the wavefields  at  the last  two time steps
and  the  forward  simulation  boundary  values  to  recompute  the
source wavefield backward in time (Gauthier et al., 1986; Dussaud
et  al.,  2008; Tang  C  and  Wang  D,  2012; Feng  B  et  al.,  2013).  This
method gains in efficiency by compensating for the time-consum-
ing  I/O  demands  with  the  recomputing  cost.  Many  variations  of
this  approach  have  been  developed.  The  only  difference  is  the
number  of  stored  boundary  values. Feng  B  and  Wang  HZ  (2012)
stored wavefield values in only a single layer near the boundary to
approximately reconstruct the source wavefield at the price of los-
ing  spatial  accuracy  near  the  boundaries.  However,  the  order  of
the  finite-difference  (FD)  stencil  was  only  degree  2  near  the
boundary, which  cannot  reproduce  the  source  wavefield  accur-
ately. Especially in 3-D, this method cannot meet the accuracy re-
quirement because the wave propagation is  comparatively  com-
plex.

An accurate wavefield reconstruction method, namely, the stand-
ard method, reproduces the source wavefield in the reverse time
direction  by  storing  the  boundary  values  with  a  thickness  of  a
half-number  of  the  FD  stencil  as  the  boundary  condition  and  by
storing  wavefields  at  the  last  two  states  as  the  initial  condition
(Gauthier  et  al.,  1986; Dussaud  et  al.,  2008; Tang  C  and  Wang  D,
2012; Nguyen and McMechan,  2014).  In  this  study,  the boundary
values  refer  to  the  wavefield  values  in  perfectly  matched  layers
(PMLs) (Berenger, 1994; Komatitsch and Tromp, 2003; Liu YS et al.,
2014).  Even  though  this  method  can  perfectly  reconstruct  the
source wavefield, the memory requirements may be unaffordable
for a typical workstation (Tan SR and Huang LJ, 2014). To mitigate
this situation, Tan SR and Huang LJ (2014) developed an extrapol-
ation-based  wavefield  reconstruction  scheme  for  the  staggered
grid method.  In  this  method,  high-order  polynomials  are  con-
structed to extrapolate the missing boundary values.  It  is  able to
offer  high  accuracy  with  fewer  storage  requirements  than  the
standard method, although it still  needs to store several layers of
wavefield  values  depending  on  the  length  of  the  FD  stencil.  To
further reduce the storage demand, Liu SL et al. (2015) proposed a
source  wavefield  reconstruction  method  that  stores  only  one
wavefield  value  as  a  linear  combination  of  wavefields  in  the

boundary  region.  They  used  an  optimization  technique  in  the
Fourier domain to obtain the coefficients for this linear combina-
tion,  and  they  presented  an  implementation  for  a  regular  grid.
This method, which is less accurate than the standard method (Liu
SL et al., 2015), essentially adopts an asymmetric FD operator, that
is, a longer operator toward the PMLs domain and a shorter oper-
ator  toward  the  computational  domain.  Recently, Vasmel  and
Robertsson  (2016) presented  an  alternative  scheme  that  adopts
the method of multiple point sources. Their method reconstructs
the source  wavefield  with  minimal  memory  requirements  by  us-
ing a  combination  of  monopole  and  dipole  sources  on  an  injec-
tion  surface  surrounding  the  model.  It  can  accurately  reproduce
the source wavefield at the cost of storing one or two surface re-
cords. The accuracy of reconstruction is independent of the order
of spatial accuracy of the FD stencil. Following the ideas of Tan SR
and Huang LJ (2014) and Sun WJ and Fu LY (2013), Yang PL et al.
(2016b) recently proposed a method that stores only the bound-
ary values according to the Nyquist sampling principle. To obtain
the boundary values at each time step, the missing values that are
not stored  are  reproduced  by  interpolation  methods.  This  meth-
od can dramatically decimate the saved boundary values without
a significant loss of accuracy (Yang PL et al., 2016b).

In recent  years,  the  SEM  has  becoming  a  popular  method  of  ad-
dressing  regional  and  global  problems,  especially  because  the
open-source package SPECFEM (Komatitsch and Vilotte, 1998; Ko-
matitsch  and  Tromp,  1999, 2002a, b ) can  handle  complex  geo-
metry  through  accurate  numerical  calculations  of  the  wavefield
(Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999). Sim-
ilarly, advances  in  numerical  methods  combined  with  develop-
ments in  high-performance  computing  have  enabled  unpreced-
ented  simulations  of  seismic  wave  propagation  in  realistic  3-D
global  Earth  models  by  using  the  SEM  (Komatitsch  and  Tromp,
2002a, b ; Chaljub et al., 2003; Chaljub and Valette, 2004; Capdev-
ille  and  Marigo,  2007; Peter  et  al.,  2011).  Conversely,  by  virtue  of
the adjoint-state method (Tarantola,  1984; Pratt and Shipp, 1999;
Tromp  et  al.,  2005, 2008; Plessix,  2006; Liu  QY  and  Tromp,  2006,
2008; Virieux  and  Operto,  2009),  the  gradient  can  be  computed
with  respect  to  the  functionals  at  a  low  cost  by  modeling  the
wavefield  twice.  Thus,  the  adjoint  tomography  or  inversion
provides  new  opportunities  for  improving  images  of  the  Earth’s
interior  (Fichtner  et  al.,  2006a, b, 2009; Tape  et  al.,  2007, 2010;
Bozdağ et al., 2011, 2016; Lee et al., 2014; Chen et al., 2015; Zhu HJ
et al., 2015). For these applications (as a special case of adjoint in-
version),  simultaneously  accessing  the  forward-propagated
source  wavefield  and  backward-propagated  receiver  wavefield
cannot  be  avoided.  A  favorable  and  feasible  solution  is  one  that
reproduces  the  source  wavefield  backward  in  time.  To  apply  the
adjoint  inversion  to  large-scale  3-D  study  cases  efficiently,  a
memory-efficient source wavefield reconstruction needs to be de-
veloped.

For  the  adjoint  tomography  application  in  SEM,  some  source
wavefield  reconstruction  methods  that  can  be  derived  directly
from  the  FD  method  have  been  implemented.  The  most  direct
way  of  reconstructing  the  source  wavefield  with  the  SEM  is  that
one store  the  last  two  time-slice  wavefield  values  and  the  wave-
field information in the PMLs (with reference to the conventional
method).  However,  the  nonuniform  spacing  of  the  interpolation
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points for algebraic polynomials imposes a tight constraint on the
time-step  compared  with  a  uniform  spacing  grid  (Carcione  and
Wang PJ,  1993).  As  a  consequence,  the Courant–Friedrichs–Lewy
(CFL) numbers decrease exponentially with the increasing degree
of  Lagrange polynomials  (Liu  SL  et  al.,  2014; De Basabe and Sen,
2007, 2010; Liu  SL  et  al.,  2017b)  (Figure  1).  This  means  that  the
SEM requires  many  more  time  steps  for  a  given  problem  com-
pared with  the  FD  method  (uniform  grid).  This  dramatically  in-
creases  the  storage amount  of  the  boundary  values  used for  the
source wavefield reconstruction. Likewise, the excessive I/O oper-
ations significantly reduce its efficiency. For these reasons, a cost-
efficient  source  wavefield  reconstruction  method  is  needed  that
will minimize the storage cost for the SEM. Recently, Komatitsch et
al.  (2016) introduced  the  checkpointing  algorithm  to  the  source
wavefield reconstruction of the SEM. During forward propagation
of the source wavefield, one saves checkpointing or restart files to
disk every few hundred or thousand time steps. During backward
propagation of the adjoint wavefield, one can forward recompute
the  source  wavefield  starting  from  the  previous  restart  file  by
reading  back  from  disk  and  storing  the  wavefields  between  two
adjacent restart files in memory. Although this method can be ap-
plied  to  dissipative  media,  it  still  requires  a  huge  amount  of
memory to save the wavefields between the adjacent restart time
instants.  Recently, Liu  SL  et  al.  (2017a) proposed  a  memory-effi-
cient  storage  method  at  the  interface  of  teleseismic  wavefield
modeling  with  a  hybrid  method  that  significantly  reduces  the
storage demand.

To save the storage cost  of  SEM-based adjoint  inversion,  we first
analyze  the  difference  between  the  FD  method  and  the  SEM,
bearing in mind that the Laplace operator is pointwise local in the
former, whereas it is elementwise global in the latter. Because our
goal is  to  develop  a  novel  efficient  wavefield  reconstruction  al-
gorithm  for  the  SEM,  here  we  propose  a  method  that  requires
only wavefield  values  stored in  a  single  boundary  layer  to  accur-
ately reconstruct the source wavefield. For the SEM, the accumu-
lated  acceleration  values  at  the  boundary  nodes  depend  on  the
nodes in the computational domain and the PMLs domain. When

the wavefield  information  in  the  PMLs  is  not  available,  the  accu-

mulated acceleration at the boundary nodes is incorrect. To accur-

ately  reconstruct  the  source  wavefield,  the  wavefields  at  the

boundary nodes need to be replaced by the corresponding stored

correct wavefield values at each time step of the backward extra-

polation  of  the  source  wavefield.  In  general,  this  reconstruction

method shares similar ideas with the method proposed by Liu SL

et  al.  (2017a) in  teleseismic  wavefield  modeling using the hybrid

method.  The  storage  cost  is  comparable  to  that  of  the  method

proposed  by Liu  SL  et  al.  (2015) using  the  FD  method.  However,

unlike the latter, our reconstruction method does not involve any

optimization  of  coefficients  as  in  the  method  by Liu  SL  et  al.

(2015),  nor  does  it  require  an  extrapolation  step  as  described  by

Tan SR and Huang LJ (2014) and Yang PL et  al.  (2016b).  We then

use  the  Marmousi  model  to  demonstrate  its  effectiveness  and

analyze its accuracy and efficiency. Finally, the reverse time migra-

tion (RTM) images obtained by the proposed method are  shown

and  compared  with  the  result  obtained  by  the  conventional

method.

2.  Source Wavefield Reconstruction with Boundary

Nodes

2.1  Acoustic Wave Equation
We present here a short exposition of the discrete formulation of

the SEM that is needed in the following sections (Komatitsch and

Vilotte, 1998; Liu YS et al., 2017a). We start from the acoustic wave

equation in an isotropic heterogeneous medium, which is

1
c2

∂2 p (x, t)
∂t2

= ∇2 p (x, t)+ f (x, t) , (1)

∇2

where p(x, t) is the acoustic pressure wavefield at spatial location x
and time t; c(x)  is  the velocity  structure; f(x, t)  is  the source term;

and  is  the  Laplace  operator.  Multiplying  equation  (1)  by  the

time-independent  test  function w, integrating  by  parts,  and  ap-

plying the  Neumann  boundary  condition  on  boundaries,  we  ob-

tain the variational form of the wave equation (1):∫
w

1
c2

∂2 p
∂t2

dΩ+
∫
∂w
∂xi

∂p
∂xi

dΩ =
∫

w f dΩ, (2)

where the repeated subscripts  represent summation over  the af-

fected variables and Ω is the computational domain. To numeric-

ally solve the integral equation (2), the computational domain Ω is

decomposed  into Ne nonoverlapping  quadrilateral  or  triangular

elements Ωe in two dimensions (physical elements). Each of these

physical elements  can  then  be  transformed  into  a  unit  or  refer-

ence  element.  More  details  can  be  found  in Komatitsch  and

Vilotte (1998) and Liu YS et al. (2017a).

On  each  reference  element,  the  pressure  field  and  test  function

can be expressed as
p (x) ≈

MN∑
i=1

ϕi (x) pi (x) ,

w (x) ≈
MN∑
i=1

ϕi (x)wi (x) ,

(3)
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Figure 1.   Courant–Friedrichs–Lewy (CFL) numbers for the finite

difference method in 2-D (solid black line), the quadrilateral spectral

element method in 2-D (solid gray line), and the triangular spectral

element method in 2-D (dashed black line). The dashed gray line

represents the maximum CFL number of .
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where ϕi(x)  is  the ith shape function or Lagrange function on the

reference  element; MN is  the  number  of  interpolation  nodes  on

each  element;  and N is  the  order  of  the  Lagrange  polynomials.

Substituting  equation  (3)  into  (2),  we  obtain  the  following  (and

well-known) ordinary difference equation,

M p̈+K p= f , (4)

p̈where  is  the  second-order  temporal  derivative  of  the  pressure

vector p with  respect  to  time; M is  the  mass  matrix,  and K is  the

stiffness matrix, whose respective entities are

mi j =

∫
1
c2
ϕi (x)ϕ j (x)dΩ, (5)

ki j =

∫ (
∂ϕi

∂x
∂ϕ j

∂x
+
∂ϕi

∂z
∂ϕ j

∂z

)
dΩ, (6)

and f is the load vector.

In the Lagrange-type SEM, the collocated interpolation and integ-

ration  nodes  are  always  adopted.  As  a  consequence,  the  mass

matrix is  usually  a  diagonal  matrix,  which  can  substantially  im-

prove  the  numerical  efficiency.  After  discretizing  the  second-or-

der temporal derivative by using the leapfrog scheme, we obtain

the following recursive equation:

pn+1 = 2pn− pn−1+∆t2 M−1 ( f n−K pn) , (7)

where n is the time index. Indeed, many other temporal discretiza-

tion  methods  can  be  adopted  (Newmark,  1959; Martin  et  al.,

2010); however, for simplicity, we use the leapfrog format.

2.2  Source Wavefield Reconstruction
In  the  adjoint  inversion,  the  source  wavefield  will  be  accessible

during  the  time-reversal  extrapolation  of  the  receiver  wavefield.

However,  the  source  and  receiver  wavefields  are  extrapolated  in

opposite  temporal  directions.  To  solve  this  dilemma,  a  popular

method is to use the wavefields at the last two time steps and the

boundary  values  of  the  forward  simulation  to  reconstruct  the

source wavefield backward in time (Gauthier et al., 1986; Dussaud

et  al.,  2008). Although this  method has received considerable at-

tention in the FD community, it faces a challenge in the SEM com-

munity. For the SEM, the CFL numbers decrease faster than those

for the FD method because of the nonuniform spacing of the in-

terpolation points (Carcione and Wang PJ, 1993). The smaller CFL

number means that many more time steps are required; therefore,

the memory size increases rapidly with the increasing degree N of

the Lagrange polynomials. Practical strategies are thus needed to

minimize  the  memory  requirements  for  reconstruction  of  the

source wavefield.

In  the two-dimensional  (2-D)  case,  as  shown in Figure  1,  the  CFL

number  of  the  FD  method  decreases  slowly  with  the  increasing

order N of the operator, whereas the CFL numbers of the quadri-

lateral SEM (QSEM) and triangular SEM (TSEM) decrease exponen-

tially as N increases (De Basabe and Sen, 2007, 2010; Liu SL et al.,

2017b). To compare the amount of memory required in each case,

we adopt  a  simple  model  for  analysis.  The  adopted  model  con-

sists of  only  two  squares  that  represent  the  computational  do-

main and the PMLs domain,  respectively  (see Figure 2).  The gray

line denotes the boundary that separates the domains from each
other.  We set the maximum modeling time to be T = 4 s.  For the
2Nth order FD method, the number of layers in the PMLs domain
to be stored is N; the memory size of the standard reconstruction
scheme  (i.e.,  storing  the  boundary  values  with  a  thickness  of  a
half-number of the FD stencil as a boundary condition) is N × (N +
1)  × nt when  disregarding  the  memory  requirements  of  the  last
two-slice  wavefields,  where nt is  the  total  number  of  time  steps.
For the Nth QSEM and TSEM, we assume that the boundary layers
consist  of  only  a  single element so that  the number of  nodes on
the  edges  is  identical  to  the  number  of  layers  in  PMLs  of  the  FD
method (see Figure 2b and 2c). As shown in Figure 2b, for the Nth-
order QSEM,  the  memory  size  of  the  conventional  wavefield  re-
construction  scheme  is  also N ×  (N +  1)  × nt.  For  the Nth-order
TSEM, the total number of nodes in the PMLs domain is 2MN – (N –
1), where the factor 2 is due to the number of triangles usually be-
ing twice the number of quadrilaterals and N – 1 is the duplicate
number  of  nodes  on  the  common  edge  (excluding  the  two  end
points). Therefore, the memory size of the conventional wavefield
reconstruction scheme is [2MN – (N – 1) - (N + 1)] × nt, where N + 1
is the number of nodes on the edge (solid gray circles on the gray
line in Figure 2c). For each method, the number nt is different be-
cause it is calculated according to the respective CFL number. As
shown in Figure 3, even for this very small model, the memory re-
quirements  of  the  conventional  source  wavefield  reconstruction
scheme for the SEM methods are several orders of magnitude lar-
ger than those for the FD method. Therefore, it is important to de-
velop  a  memory-efficient  wavefield  reconstruction  algorithm  for
the SEM.

M−1 ( f n−K pn)

M−1 ( f n−K pn)

M−1( f n−K pn)①+M−1( f n−K pn)②

In the  FD  method,  the  Laplace  operator  depends  on  the  wave-
field values at the FD stencil (by solving the strong or differential
form of the wave equation), whereas in the SEM, the Laplace oper-
ator  depends  on  the  wavefield  values  in  the  entire  element  (by
solving the weak or integral form of the wave equation). Thus, the
Laplace operator of the FD method is pointwise local, whereas the
Laplace operator of the SEM is elementwise global. Because of this
property of  the Laplace operator,  we are able to develop an effi-
cient  wavefield  reconstruction  method  for  the  SEM.  To  carry  out
the analysis, we assume the model consists simply of two squares.
As  shown  in Figure  4, we  decompose  the  model  into  two  do-
mains, namely, the computational domain and the PMLs domain.
The former  consists  of  element  1  and  the  latter  consists  of  ele-
ment  2  (Figure  4).  The  model  has  two  types  of  nodes:  the  inner
nodes, denoted by the cross and plus symbols, and the boundary
nodes,  denoted by  the  solid  circles  and open circles.  In  the  SEM,
the global mass and stiffness matrices are the accumulated contri-
butions from all the neighboring elements. In both elements, the
accumulated  acceleration  values  at  the  inner

nodes  (represented  by  the  cross  and  plus  symbols)  depend  only
on  the  contributions  from  the  nodes  in  the  current  element,
whereas  the  accumulated  acceleration  values 

at  the  boundary  nodes  (represented  by  circles)  depend  on  the
contributions from the nodes in the current element and connec-
ted  elements.  Specifically,  the  accumulated  acceleration  values
at  the  common  nodes  (solid  gray  circles  in Figure  4)  are

,  which  are  the  summation

of the contributions from elements 1 and 2.
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In the backward propagation of the source wavefield, we use the

following equation to extrapolate the source wavefield:

pn−1 = 2pn− pn+1+∆t2 M−1 ( f n−K pn) . (8)

PMLs domain Computational  domain
(a)

N+1

N

(c) PMLs domain Computational  domain

N

N+1

(b)
PMLs Domain Computational Domain

 
Figure 2.   Wavefield history at the nodes that needs to be stored to reconstruct the source wavefield for the finite difference method (a), the

quadrilateral spectral element method (b), and the triangular spectral element method (c). The thick gray line denotes the boundary that

separates the domains from each other. The left side denotes the perfectly matched layers (PMLs) domain, whereas the right side denotes the

computational domain.
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Figure 3.   Memory requirements of the conventional wavefield

reconstruction method for the finite difference method (solid black

line), the quadrilateral spectral element method (solid gray line), and

the triangular spectral element method (dashed black line). The

conventional wavefield reconstruction method reconstructs the

source wavefield by using the last two-slice wavefield snapshots plus

the wavefield history in the perfectly matched layers (PMLs), whereas

the proposed wavefield reconstruction method reproduces the

source wavefield by using the last two-slice wavefield snapshots plus

the wavefield history at the boundary nodes. For comparison, we

assume that the PMLs consist of only one element and disregard the

storage cost of the two-slice wavefield snapshots.

PMLs domain Computational domain

Boundary

② ①

 
Figure 4.   Illustration of the new wavefield reconstruction algorithm

that uses only one boundary layer. The left domain (element 2)

denotes the perfectly matched layers (PMLs) domain, whereas the

right domain (element 1) denotes the computational domain. The

thick gray line denotes the boundary that separates the domains from

each other. The cross and plus symbols represent the nodes where

the accumulated acceleration values depend on only the nodes in the

current element, whereas the solid circles and open circles represent

the nodes where the accumulated acceleration values depend on the

nodes in both the current element and the connected elements. The

solid gray circles represent the nodes where the Laplace operator

depends on the nodes in the PMLs domain (element 2) and the

computational domain (element 1).
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pn pn+1

pn−1

M−1( f n−K pn)①+M−1( f n−K pn)②

pn−1

In  this  process,  and  in the  computational  domain  are  al-

ways available. Given that the accumulated acceleration at the in-

ner  nodes  depends  only  on  the  contribution  from  the  nodes  in

the  current  element,  the  updated  wavefield  values  at  these

nodes (plus  symbols  in Figure 4)  are always correct  even though

the  wavefield  values  in  the  PMLs  (i.e.,  the  solid  circles  and  cross

symbols in Figure 4) are unavailable. This is because the accumu-

lated  acceleration  at  the  boundary  nodes  depends  on  nodes  in

the  current  element  and  connected  elements,  that  is,

.  When the  wavefield  values

in  the  PMLs  are  not  available,  the  accumulated  acceleration  at

these boundary  nodes (solid  gray circles  shown in Figure 4) can-

not  be  reproduced  correctly.  Therefore,  the  updated  wavefield

values  at these boundary nodes (solid gray circles in Figure 4,

and  nodes  on  the  thick  solid  line  in Figure  5b)  are  not  exact.  To

correct the incorrect wavefields at these boundary nodes, we can

replace  the  boundary  wavefield  values  with  the  corresponding

stored correct  values  to  reconstruct  the  source  wavefield  accur-

ately (i.e., wavefields values at the nodes of the outer boundary of

the computational domain shown in Figure 5). We can then expli-

citly  and  accurately  extrapolate  the  wavefield  at  time n–1 by  us-

ing  the  wavefields  at  times n and n+1.  Thus,  only  the  wavefield

snapshots  at  the  last  two time slices  and the  wavefield  values  at

the  boundary  nodes  need  to  be  saved  during  the  forward

propagation of the source wavefield. In the backward reconstruc-

tion of the source wavefield, the corresponding reproduced incor-

rect values should then be replaced with the stored correct ones.

In  comparison  with  the  total  PMLs  (Figure  5a), the  memory  re-

quirement for the wavefield values at the boundary nodes (Figure

5b) can be dramatically reduced. Although the analysis is conduc-

ted on two elements, its application to more elements is straight-

forward. The  source  wavefield  reconstruction  method  is  illus-

trated in Table 1. In the next sections,  we perform a series of nu-

merical tests to verify the effectiveness of this novel wavefield re-

construction method.

2.3  Efficiency
In the  FD  community,  the  source  wavefield  is  popularly  recon-
structed by using the last two time-slice wavefield snapshots plus
the wavefield  history  in  the  PMLs  (Gauthier  et  al.,  1986; Dussaud
et al., 2008). This scheme can be transplanted directly to the SEM.
For an enlightening comparison, we reconstruct the source wave-
field by using the following two schemes: (1) storing the last two
time-slice wavefield snapshots plus the entire history of the wave-
field in the PMLs, which is the conventional method directly from
the FD community; or (2) storing the last two time-slice wavefield
snapshots  plus  the complete history  of  the wavefield only  at  the
boundary nodes,  which  is  the  new  source  wavefield  reconstruc-
tion  method.  For  purposes  of  discussion,  we  adopt  the  model
shown in Figure 2. We can then define the following memory-sav-
ing  ratio  (MSR)  for  a  comparison  of  efficiency  (disregarding  the
last two-slice wavefields):

MSR =
MPML

Mbound
, (9)

(N +1)2

N × (N +1)

(N +1)2− (N +1)
N +1

= N

2MN − (N −1)
2MN − (N −1)− (N +1)

N +1

2
MN −N
N +1

(N +1)3

N × (N +1)2 (N +1)2

where MPML denotes the memory requirement of the wavefield re-
construction method with the wavefield history in the PMLs (first
working  scheme)  and Mbound denotes an  analogous  memory  re-
quirement  with  the  wavefield  history  at  the  boundary  nodes
(second working scheme). The nodes that need to be stored to re-
construct the source wavefield for the FD method, the QSEM, and
the TSEM are shown in Figure 2.  For the 2-D FD method and the
QSEM, the total number of nodes in the PMLs domain is 

(Figure 2a and 2b), whereas the number of nodes that needs to be
stored is  for the conventional source wavefield recon-
struction scheme. Therefore, the MSR for the FD method and the

QSEM is .  For  the TSEM, the total  number

of nodes in the PMLs domain is , whereas the num-
bers of nodes that need to be stored are 
and  for the conventional and proposed source wavefield re-
construction  schemes,  respectively.  As  a  consequence,  the  MSR

for  the TSEM is . For  the 3-D FD method and the hexa-

hedral  SEM,  the  total  number  of  nodes  in  the  PMLs  domain  is
 and  the  numbers  of  nodes  that  need  to  be  stored  are

 and  for  the  conventional  and  proposed

source wavefield reconstruction schemes, respectively. Therefore,
it still  leads to MSRs of N.  Certainly, this is just the minimum MSR

Regular domain

Regular domain

PMLs domain 

PMLs domain 

Store wavefields in PMLs 

Store wavefields on boundaries 

(a)

(b)

 
Figure 5.   Comparison of the storage cost for the conventional and

new wavefield reconstruction algorithms. (a) The conventional

wavefield reconstruction algorithm needs to store wavefield values in

all the perfectly matched layers (PMLs), whereas (b) the new wavefield

reconstruction algorithm needs to store only the wavefield values at

the boundary nodes.

Table 1.   Pseudocode for source wavefield forward propagation and
backward propagation

Forward Propagation

for t = 0 to t = tmax
　forward propagate source wavefield using equation (7)
　add source function
　save wavefield at boundary nodes
end for

Backward Propagation

for t = tmax to t = 0
　subtract time-reversed source function
　backward propagate source wavefield using equation (8)
　replace wavefield at boundary nodes with stored ones
end for
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because at least two elements are generally adopted to suppress
spurious reflections from artificial  boundaries well  (Komatitsch et
al.,  2003).  In Figure  6,  with  the  identical  parameters  illustrated in
Figure  2,  we  compare  the  memory  requirements  for  the  QSEM
and  TSEM  when  using  the  conventional  and  proposed  source
wavefield  reconstruction  schemes.  We  can  observe  that  the
memory sizes of the source wavefield reconstruction schemes for
the  QSEM  and  TSEM  can  be  significantly  reduced  when  the  new
reconstruction scheme is adopted. As the degree of the polynomi-
als  increases,  the  memory-saving  size  increases.  In Figure  7,  we
show the MSRs versus the order of the Lagrange polynomials for
the SEM in quadrilateral,  triangular,  and hexahedral elements, re-
spectively. Notably, the MSRs for the SEM in both the quadrilater-
al  and  hexahedral  elements  are  at  least  1,  whereas  the  MSRs  for
the SEM in triangular elements are at least 2. For the usually adop-
ted  fourth-order  degree  polynomials  (Komatitsch  and  Vilotte,
1998), the MSR for the former is 4, whereas the MSR for the latter
is about  5.6.  This  illustrates  that  the  developed  wavefield  recon-
struction method is more appealing for higher order methods.

3.  Numerical Examples

3.1  Effectiveness
Using the elementwise global property of the Laplace operator in
the  SEM,  we  can  reconstruct  the  source  wavefield  by  saving  the
wavefield values at the boundary nodes plus the wavefield snap-
shots at the last two time slices (Figure 5b). In this section, we re-
port on a series of numerical tests carried out to check the effect-
iveness of the proposed wavefield reconstruction method. The di-
mensions of the adopted model size are 3.82km × 1.21km (Marm-
ousi model, Figure 8). An adaptive triangular mesh made by using

the  open-source  package  Triangle  (http://www.cs.cmu.
edu/~quake/triangle.html)  discretizes the seismic velocity model.
The  seismic  source,  denoted  by  a  cross  symbol,  is  located  at  the
point (1.91 km, −0.05 km) and is modeled by a Ricker wavelet with
a  dominant  frequency  of  22  Hz.  The  duration  of  wavefield
propagation  is  3.2  s.  The  corresponding  CFL  number  determines
the time interval. The inverted triangle denotes a receiver located
at the  point  (3.8  km,  −0.1  km)  that  records  the  wavefield  for  fur-
ther analysis.  In  addition,  383  equally  spaced  receivers  are  de-
ployed  exactly  on  the  surface  to  record  forward-  and  backward-
propagated source wavefields.

In this example, we handle the top boundary as a PMLs boundary
condition.  For  the  triangular  mesh  shown  in Figure  8,  we  apply
the cubature points-based TSEM (Liu YS et al., 2017a) to numeric-
ally  solve  the  acoustic  wave  equation  (1).  In  each  element,  the
cubature points are both the interpolation nodes and the integra-
tion nodes. This also leads to a diagonal mass matrix and exhibits
an accuracy comparable to that of the QSEM (Liu YS et al., 2017a).
In this  test,  we adopt fourth-order Lagrange polynomials  in each
triangular element. According to its CFL number (i.e., 0.0553), the
maximum  allowable  time  interval  for  calculation  is  0.2  ms  to
achieve stable wavefield extrapolation. Throughout this study, the
thickness of the PMLs is assumed to be 0.1 km.

Figure 9 shows (from left to right) the forward-propagated wave-
field  (left),  the  backward-propagated wavefield  (central),  and the
residual multiplied by 104 (right) at time steps of 0.1 s (top), 0.5 s
(middle), and 1.0 s (bottom). The reconstructed wavefields are al-
most  identical  to  the  theoretical  ones  (i.e.,  the  forward-propag-
ated  wavefield).  Although  the  residuals  (obtained  by  subtracting
the  values  included  in  the  central  column  from  those  plotted  in
the left column) are enlarged by 10,000 times, no coherent events
are observed. This indicates that the source wavefield is perfectly
reproduced, which  proves  the  effectiveness  of  the  novel  wave-
field  reconstruction  method.  To  check  whether  the  error  level  is
reasonable,  we  have  also  reconstructed  the  wavefield  by  using
the conventional  method (i.e.,  the first  scheme mentioned in the
previous  section).  The  corresponding  reconstructed  wavefields
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Figure 6.   Memory requirements of the conventional (solid lines) and

proposed (dashed lines) wavefield reconstruction methods for the

quadrilateral spectral element method (black lines) and the triangular

spectral element method (gray lines). The conventional wavefield

reconstruction method reconstructs the source wavefield by using

the last two-slice wavefield snapshots plus the wavefield history in the

perfectly matched layers (PMLs), whereas the proposed wavefield

reconstruction method reproduces the source wavefield by using the

last two-slice wavefield snapshots plus the wavefield history at the

boundary nodes. For comparison, we assume that the PMLs consist of

only one element and disregard the storage cost of the two-slice

wavefield snapshots.
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Figure 7.   Memory-saving ratio versus the order of the Lagrange

polynomials for the quadrilateral spectral element method (QSEM) in

2-D (quadrilateral elements, solid black line) and 3-D (hexahedral

elements, dashed gray line), and for the triangular spectral element

method (TSEM) in 2-D (triangular elements, solid gray line).
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and  scaled  residuals  at  time  instants  of  0.1,  0.5,  and  1.0  s  are

shown in Figure 10. It can be seen that the wavefields reconstruc-

ted with the conventional method (Figure 10b, 10e, and 10h) are

comparable  to  those reconstructed by the novel  method (Figure

9b, 9e, and 9h). In particular, the scaled residuals in one case and

another  (Figure  9c, 9f, 9i, 10c, 10f,  and 10i)  are  almost  identical.

This indicates that the accuracy of the developed wavefield recon-

struction method is comparable to that of the conventional meth-

od.

To verify whether the reconstructed wavefields are exact at  each

time instant,  here we show the seismograms recorded by the re-

ceivers  deployed  on  the  surface. Figure  11 shows the  seismo-

grams  produced  by  the  forward-propagated  wavefield  (Figure

11a)  and  the  backward-propagated  wavefield  (Figure  11b), to-

gether with the scaled residual (Figure 11c). Clearly, the common

shot gathers obtained by the forward-propagated wavefield (Fig-

ure 11a) are identical to those provided by the backward-propag-

ated wavefield (Figure 11b). The residuals are exactly zero (Figure

11c) because the stored wavefield history on the surface restricts

the wavefield reconstruction.

In  this  case,  the  stored  boundary  values  (at  the  four  edges)  can

completely  restrict  the  wavefield  reconstruction.  To  exclude  this

effect, we also display the wavefield history at a fixed receiver loc-

ated  at  the  position  (3.8  km,  −0.1  km). Figure  12 shows the  re-

cords of the forward-propagated wavefields (thick black line) and

the  records  of  the  backward-propagated  wavefields  obtained  by

the  new  (blue  dashed  and  dotted  line)  and  conventional  (red

dashed  line)  wavefield  reconstruction  methods.  The  residuals

multiplied  by  a  factor  of  104 (cyan  and  magenta  solid  lines)  are

also superimposed on the records. The errors can be observed to
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Figure 8.   The 3.82km × 1.21km-sized Marmousi model. A dense adaptive triangular mesh is superimposed on the velocity model. The white

cross (in the middle) denotes the seismic source located at the point (1.91 km, −0.05 km), whereas the white inverted triangle (on the right)

denotes a fixed receiver located at the point (3.8 km, −0.1 km) that records the wavefield for further analysis.
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Figure 9.   Snapshots and residuals at different time instants. (Left to right) The forward-propagated wavefield (left), the backward-propagated

wavefield (central), and the scaled residuals (right) at time instants of 0.1 s (top), 0.5 s (middle), and 1.0 s (bottom). The top boundary is considered

a perfectly matched layers (PMLs) boundary condition. The order of the Lagrange polynomials is degree 4. The backward-propagated wavefields

are reconstructed by using the last two time-slice wavefield snapshots and the wavefield history at the boundary nodes (see Figures 4 and 5), i.e.,

the new reconstruction method. The scaled residuals are computed by subtracting the values included in the central column from those plotted

in the left column and then multiplying by a factor of 104.
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increase very slowly with a decrease in time because of the back-
ward  extrapolation  in  time.  Generally,  the  errors  attributable  to
both methods are comparable and are at the rounding error level.
This further indicates that the source wavefield is well reconstruc-
ted by the developed method when compared with the conven-

tional method.

In  this  experiment,  there  are  22,616  triangular  elements  whose

minimum and maximum edge lengths are 11.86 and 67.16 m, re-

spectively. The number of cubature points is 249,809 in total. The
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Figure 10.   Same as in Figure 9. The backward-propagated wavefields are reconstructed by using the last two time-slice wavefield snapshots and

the wavefield history in the perfectly matched layers (PMLs) (see Figures 4 and 5), i.e., the conventional algorithm. In the right column, the scaled

residuals are computed by subtracting the values included in the central column from those plotted in the left column and then multiplying by a

factor of 104.
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Figure 11.   Seismograms (a, b) and scaled residual (c) recorded at the receiver deployed on the surface. The top boundary is considered a

perfectly matched layers (PMLs) boundary condition. (a) Seismogram obtained by the forward-propagated wavefield. (b) Seismogram obtained

by the backward-propagated wavefield. (c) The scaled residual is computed by subtracting the seismogram obtained by the forward-propagated

wavefield from that obtained by the backward-propagated wavefield and then multiplying by a factor of 104. The backward-propagated

wavefields are reconstructed by using the last two time-slice wavefield snapshots and the wavefield history at the boundary nodes (see Figures 4

and 5), i.e., the new reconstruction method.
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number  of  nodes  in  the  PMLs  is  58,219,  whereas  the  number  of

boundary  nodes  is  1,932.  The  memory  requirements  of  the  two

methods  are  117.93  MB  and  3.47  GB,  respectively;  therefore,  the

MSR is ~30, which significantly reduces the storage demand. Even

though the adopted model is very small,  the conventional meth-
od still requires several gigabytes because of the nonuniform spa-
cing of the interpolation points (Carcione and Wang PJ, 1993).

3.2  Tests with Different Degrees of Polynomials
In the  previous  section,  we  have  analyzed  the  proposed  recon-
struction method by using the TSEM and a fixed order of the Lag-
range polynomials. In this section, assuming the same physics and
geometry as  before,  we check its  effectiveness  with different  de-
grees of the Lagrange polynomials.  We adopt polynomials of de-
grees 3 and 5 for comparison. According to the CFL numbers (i.e.,
0.105 and 0.024), the maximum allowable time intervals for stable
calculation are 0.3 and 0.1 ms, respectively. The adaptive triangu-
lar  mesh (not included here)  used for  seismic modeling is  similar
to the one shown in Figure 8. The top boundary is set as a free sur-
face  boundary  condition.  Because  the  new  wavefield  method  is
comparable to  the  conventional  one,  the  reconstructed  wave-
fields  obtained  by  the  conventional  method  are  not  shown.
Figure  13 shows  the  forward-propagated  and  backward-propag-
ated wavefields  at  a  time instant  of  0.5  s,  once calculated by the
TSEM  (Liu  YS  et  al.,  2017a)  with  polynomials  of  degrees  3  and  5.
Generally, the wavefields are also perfectly reconstructed (Figures
13a–13b and 15d–15e) when compared with previous results (Fig-
ure 9d–9e). No coherent events can be observed in the scaled re-
siduals  (Figure  13c and 13f), which  demonstrates  that  the  pro-
posed wavefield reconstruction method is independent of the or-
der of the Lagrange polynomials.

When polynomials of degree 3 are used, there are 33,513 triangu-
lar  elements  whose  minimum  and  maximum  edge  lengths  are
8.31 m and 51.76 m, respectively. The number of cubature points
is  218,833  in  total.  The  number  of  nodes  in  the  PMLs  is  17,868,
whereas the  number  of  boundary  nodes  is  844.  The  memory  re-
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Figure 12.   Seismic records at a fixed receiver located at the point

(3.8 km, −0.1 km) (shown in Figure 8). The top boundary is conducted

as a perfectly matched layers (PMLs) boundary condition. The order of

the Lagrange polynomials is degree 4. The solid black line is the

record of the forward-propagated wavefield. The dashed red line is

the record of the backward-propagated wavefield reconstructed by

using the last two time-slice wavefield snapshots plus the wavefield

history in the PMLs, whereas the solid magenta line is the

corresponding residual multiplied by a factor of 104. The dashed and

dotted line is the backward-propagated wavefield reconstructed by

using the last two time-slice wavefield snapshots plus the wavefield

history at the boundary nodes, whereas the solid cyan line is the

corresponding residual multiplied by a factor of 104.
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Figure 13.   Snapshots and scaled residuals computed by the triangular spectral element method with different degrees of Lagrange

polynomials. Forward-propagated wavefield (left), backward-propagated wavefield (central), and scaled residuals (right) calculated at a time

instant of 0.5 s. The top boundary is considered a free surface boundary condition. The results computed by the triangular spectral element

method (TSEM) with polynomials of degree 3 are shown in the top row, whereas the results computed by the TSEM with polynomials of degree 5

are shown in the bottom row. The backward-propagated wavefields are reconstructed by using the last two time-slice wavefield snapshots and

the wavefield history at the boundary node (see Figures 4 and 5), i.e., the new reconstruction method. The scaled residuals are computed by

subtracting the values included in the central column from those plotted in the left column and then multiplying by a factor of 104.
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quirements of  the  two  methods  are  51.52  MB  and  1.07  GB,  re-
spectively; hence,  the  MSR is  approximately  21.  When polynomi-
als  of  degree  5  are  used,  there  are  12,126  triangular  elements
whose  minimum  and  maximum  edge  lengths  are  14.46  m  and
92.86 m, respectively. The number of cubature points is 261,710 in
total.  The  number  of  nodes  in  the  PMLs  is  20,465,  whereas  the
number  of  boundary  nodes  is  841.  The memory requirements  of
both methods are 102.66 MB and 2.44 GB, respectively; hence, the
MSR  is  about  24.  Obviously,  a  higher  MSR  can  be  obtained  by
working with higher order methods.

3.3  Tests with Different Types of Elements
In the  previous  sections,  we  have  tested  only  in  triangular  ele-
ments.  Here,  we  test  the  wavefield  reconstruction  method  in
quadrilateral elements. In each element, we adopt the Gauss–Lob-
atto–Legendre points as the interpolation and integration nodes,
which usually  generates a  diagonal  mass matrix  (Komatitsch and
Vilotte,  1998). Fourth-order Lagrange polynomials are usually ad-
opted  (Komatitsch  and  Vilotte,  1998). Figure  14 shows the  for-
ward-propagated and backward-propagated wavefields at a time
instant  of  0.5  s,  once  calculated  with  the  SEM  (Komatitsch  and
Vilotte,  1998: Liu  YS  et  al.,  2017a),  and  the  meshes  of  triangular
and quadrilateral elements. The comparison of the reconstructed
wavefields (Figure 14b and 14e) reveals results almost identical to
the theoretical ones (Figure 14a and 14d) whether with triangular
or  quadrilateral  elements.  The  scaled  residuals  (Figure  14c and
14f) are  comparable,  which  further  demonstrates  that  the  pro-
posed  wavefield  reconstruction  method  is  independent  of  the
element type.

In  this  experiment,  there  are  13,066  quadrilateral  elements  with
the  same  minimum  and  maximum  edge  lengths  of  20.0  m.  The
number  of  Gauss–Lobatto–Legendre  points  is  213,325  in  total.

The number of nodes in the PMLs is 27,153, whereas the number

of  boundary  nodes  is  1,253.  The  memory  requirements  of  both

methods  are  50.99  MB  and  1.08  GB,  respectively,  and  the  MSR  is

21.7.

3.4  Tests with Different Temporal Discretization Schemes
In the previous sections, the temporal discretization method is the

second-order  leapfrog  scheme  (equation  (8)).  In  this  section,  we

test the developed reconstruction method with different tempor-

al  discretization  formats.  The  temporal  discretization  schemes

considered are  the second-order  leapfrog format,  the  second-or-

der explicit Newmark format (Newmark, 1959), and the fourth-or-

der Lax–Wendroff format (Dablain, 1986; Jund and Salmon, 2007).

In the forward propagation of the source wavefield, the displace-

ment values at the boundary nodes are stored for the second-or-

der  leapfrog scheme;  the accumulated acceleration values at  the

boundary  nodes  are  stored  for  the  second-order  Newmark

scheme; and  both  the  displacement  and  accumulated  accelera-

tion values at the boundary nodes are stored for the fourth-order

Lax–Wendroff scheme. In the backward propagation of the source

wavefield, the stored values replace the updated values at the cor-

responding  positions.  In  this  section,  we  take  the  same  physics

and  geometry  as  before.  The  top  boundary  is  considered  a  free

surface  boundary  condition.  The  fourth-order  cubature  points-

based TSEM is adopted to solve equation (1). Figure 15 shows the

snapshots  and  scaled  residuals  computed  by  the  three  temporal

discretization  schemes.  In  general,  the  reconstructed  wavefields

are  almost  identical  to  the  theoretical  ones.  The  scaled  residuals

are at the rounding error level.  This further indicates that the de-

veloped source wavefield reconstruction method is  independent

of the temporal discretization scheme.
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4.  Application to Reverse Time Migration
The tests above demonstrate that the proposed wavefield recon-
struction method is  independent  of  the  boundary  condition,  the
order of the Lagrange polynomials, and the element type used for
implementation.  To test  the accuracy  and efficiency of  the novel
algorithm in the adjoint inversion, such as LSRTM (Tang YX, 2009;
Liu  XJ  et  al.,  2016, 2017; Liu  YS  et  al.,  2016)  and  FWI  (Tarantola,
1984; Virieux and Operto,  2009; Liu YS et al.,  2017b), here we ap-
ply the new method to the RTM because the first iteration in the
LSRTM is equivalent to one RTM.

The adopted model is a 11.5km × 3.75km-sized Marmousi model.
Figure 16a shows the model used to synthetize the data, whereas
Figure 16b shows a Gaussian smoothed version of  the Marmousi
velocity model  as  the  migration  velocity  model  to  avoid  backs-
cattered waves. A Ricker wavelet with a dominant frequency of 22
Hz located at a depth of 0.05 km models the seismic source in this
experiment. The synthetic data are acquired from 58 shots equally
spaced  from  each  other  at  a  distance  of  0.2  km.  The  first  shot  is
located at a point of coordinates (0.05 km, −0.05 km). The receiv-
ers are evenly deployed on the surface with a fixed-spread acquis-
ition geometry. The model is discretized by triangles, whose min-
imum and  maximum  edge  lengths  are  12.0  m  and  114.5  m,  re-
spectively. Figure  16c shows  an  enlarged  view  of  the  portion  of
mesh  delimited  by  the  rectangle  in  the  center  of  the  other  two
plots. The number of triangular elements is 126,731. The cubature
points-based  TSEM  (Liu  YS  et  al.,  2017a)  is  adopted  to  solve  the
acoustic wave equation. The order of the Lagrange polynomials is

4, which leads to 1,396,664 cubature points in total. According to

the  CFL  number,  the  maximum  allowable  time  interval  is  0.2  ms

for a stable wavefield simulation. The wavefield is propagated un-

til 7 s, which leads to 35,000 time steps. The thickness of the PMLs

is still 0.1 km. To purely investigate the accuracy and efficiency of

the  wavefield  reconstruction  method,  we  deal  with  the  top

boundary  condition  as  a  PMLs  boundary  condition  to  eliminate

the  effect  of  multiple  waves  on  the  RTM  image,  although  this  is

slightly impractical.

Figure 17 shows the RTM images obtained by reconstructing the

wavefield history from the information in the PMLs (Figure 17a) or

at  the  boundary  nodes  (Figure  17b). Intuitively,  the  images  ob-

tained by the two working schemes are quite comparable, which

indicates  that  the  developed  wavefield  reconstruction  method

can  be  reliably  applied  to  the  adjoint  inversion,  such  as  LSRTM

and FWI. Of course, for comparison purposes, we have run identic-

al  code on the same computer (Intel  Xeon E5-2683 v4,  2.10 GHz)

except for  the  difference  between  the  source  wavefield  recon-

struction  methods.  The  same  computational  language  (Fortran

90, 64 threads parallel  with the OpenMP) has been implemented

and executed throughout the calculation routines on a Windows

operating  system  for  the  two  runs.  In  terms  of  the  elapsed  time,

the RTM image obtained by the wavefield values in the PMLs con-

sumed 124.8  hours,  whereas  the  RTM  image  obtained  by  the  in-

formation  at  the  boundary  nodes  consumed  only  111.6  hours.

This demonstrates that the I/O operations involved in the conven-

tional  reconstruction  method  (by  saving  the  wavefield  history  of
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the PMLs on disk) significantly depreciates the efficiency of the al-

gorithm. As shown in Figure 7, this efficiency difference in favor of

the boundary nodes-based method will be more evident in high-

er order methods.

In this numerical experiment, the number of nodes in the PMLs is

132,979,  whereas  the  number  of  boundary  nodes  is  5,184.  As  a

result,  the  memory  requirement  of  the  second  scheme  is  only

692.2 MB, whereas that of  the first  scheme (i.e.,  the conventional

method) is up to 17.3 GB, which leads to an MSR of 25.7. With the

second scheme,  it  is  perfectly  possible  to  store  the  entire  wave-

field  history  at  the  boundary  nodes  in  the  computer  memory.

However, with the first scheme, the amount of computer memory

needed to store the wavefield history may not be affordable and

can be  saved  only  on  hard  disk,  which  involves  many  I/O  opera-
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tions.  Even  operating  with  a  2-D  model,  the  proposed  wavefield
reconstruction method can significantly improve the efficiency of
RTM because the nonuniform spacing of the interpolation points
for algebraic polynomials places a stringent constraint on the time
step (Carcione and Wang PJ, 1993).

5.  Discussion
In this paper, we have reconstructed the source wavefield by stor-
ing the last two time-slice wavefield snapshots plus the wavefield
history at the boundary nodes. This method makes full use of the
elementwise global  property of  the Laplace operator in the SEM.
The memory requirements are equivalent to those needed in the
FD  scheme  (Liu  SL  et  al.,  2015; Vasmel  and  Robertsson,  2016).  In
comparison with  the  FD  approach,  the  new  method  is  algorith-
mically simpler because it  does not involve any extra operations.
However,  the  proposed  method  cannot  be  extended  to  the  FD
domain because the property of the Laplace operator here differs
from  this  property  in  the  FD  method.  Without  limiting  ourselves
to the  SEM,  our  wavefield  reconstruction  method  could  poten-
tially  be applied to  a  weak form-based wave equation solver,  for
example in the context of the finite element method and the dis-
continuous Galerkin method (Brossier et al., 2010).

Although the experiments conducted in this study have been per-
formed  in  2-D,  the  application  of  the  new  method  to  3-D  is
straightforward. However,  like  the conventional  wavefield  recon-
struction method in the FD community, this method is valid only
in nondissipative media. In dissipative media, it can be combined
with the optimal checkpointing method, as Yang PL et al. (2016a)
have done through the FD method.

With respect  to  the  memory  requirement,  interpolating  the  his-
tory of significantly decimated boundaries can mitigate this issue
(Yang PL et al.,  2016b) because the injection of the boundary se-
quence in time is essentially determined by the Nyquist sampling
principle rather than the much smaller time interval given by the
CFL number. To access information at the boundaries each time, it
is necessary to adopt some interpolation method, such as the dis-
crete Fourier transform interpolation, Kaiser-windowed sinc inter-
polation, or Lagrange polynomial interpolation, to interpolate the
missing  values.  Therefore,  our  method  combined  with  that  of
Yang  PL  et  al.  (2016b) allows the  in-core  memory-saving  wave-
field values at the boundaries to be feasible in large-scale 3-D ima-
ging  applications.  In  addition,  regardless  of  whether  we  present
the  wavefield  reconstruction  method  in  an  acoustic  medium,  its
application to other media is straightforward.

6.  Conclusions
We have developed an efficient wavefield reconstruction method
for the  SEM  by  making  full  use  of  the  elementwise  global  prop-
erty  of  the  Laplace  operator.  A  series  of  numerical  experiments
have allowed us to demonstrate that the accuracy of this method
is independent of the order of the Lagrange polynomials, the ele-
ment type,  and  the  temporal  discretization  method  used  for  im-
plementation.  The  residuals  obtained  with  the  boundary  nodes
and also PMLs, magnified up to ten thousand times, reveal the ab-
sence  of  coherent  events,  thus  indicating  that  the  former  is  able
to  accurately  reconstruct  the  source  wavefield  when  compared

with  the  conventional  method.  Because  the  boundary  nodes-
based  wavefield  reconstruction  method  needs  to  store  only  the
last two time-slice wavefield snapshots plus the wavefield history
on the boundary,  it  can save memory,  from double up to several
hundred  times,  without  a  loss  of  accuracy.  Not  only  does  the
memory  requirement  decrease  significantly,  but  it  also  improves
the efficiency of the adjoint inversion because it avoids excessive
and inefficient I/O operations. To compare the proposed method
with the  conventional  scheme,  the  new  method  is  finally  imple-
mented to obtain RTM imaging. The results indicate that the new
algorithm produces almost the same good RTM images, but it re-
quires about 1/25 times the memory compared with the conven-
tional method. With the new method, saving the boundary wave-
fields in the computer memory is feasible. In addition, among the
advantages of the method is that it can potentially be applied to a
weak form-based  wave  equation  solver,  such  as  the  finite  ele-
ment  or  discontinuous  Galerkin  method.  Finally,  the  proposed
method  is  especially  appealing  for  working  with  higher  order
methods.
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