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Abstract: Photoelectrons are produced by solar Extreme Ultraviolet radiation and contribute significantly to the local ionization and heat
balances in planetary upper atmospheres. When the effect of transport is negligible, the photoelectron energy distribution is controlled
by a balance between local production and loss, a condition usually referred to as local energy degradation. In this study, we examine
such a condition for photoelectrons near Mars, with the aid of a multi-instrument Mars Atmosphere and Volatile Evolution data set
gathered over the inbound portions of a representative dayside MAVEN orbit. Various photoelectron production and loss processes
considered here include primary and secondary ionization, inelastic collisions with atmospheric neutrals associated with both excitation
and ionization, as well as Coulomb collisions with ionospheric thermal electrons. Our calculations indicate that photoelectron production
occurs mainly via primary ionization and degradation from higher energy states during inelastic collisions; photoelectron loss appears to
occur almost exclusively via degradation towards lower energy states via inelastic collisions above 10 eV, but the effect of Coulomb
collisions becomes important at lower energies. Over the energy range of 30–55 eV (chosen to reduce the influence of the uncertainty in
spacecraft charging), we find that the condition of local energy degradation is very well satisfied for dayside photoelectrons from 160 to
250 km. No evidence of photoelectron transport is present over this energy range.
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1.  Introduction
Photoelectrons  are  an  important  population  of  non-thermal
particles  in  the  upper  atmospheres  of  Solar  System  planets  such
as Earth (Doering et al., 1976; Lee et al., 1980a, b), Mars (Shutte et
al., 1989; Frahm et al., 2006a, b; Sakai et al., 2015), Venus (Coates et
al.,  2008, 2015; Tsang  et  al.,  2015),  and  Titan  (Coates  et  al.,  2007;
Wellbrock et al., 2012). They are produced by solar Extreme Ultra-
violet  (EUV)  and X-ray ionization of  atmospheric  neutrals,  usually
denoted  as  primary  ionization,  as  well  as  by  impact  ionization
from primary photoelectrons with energy above the local  ioniza-
tion potential, usually denoted as secondary ionization (Fox et al.,
2008,  and  references  therein).  Photoelectrons  are  of  extensive
aeronomical  interest  because  they  represent  a  key  link  between
solar  EUV/X-ray  energy  and  atmospheric  thermal  energy  (e.g.
Chen RH et al., 1978; Choi et al., 1998; Matta et al., 2014).

On Mars,  the typical  photoelectron energy distribution is  charac-
terized by sharp peaks at 22–27 eV due to CO2 and O photoioniza-
tion by the strong solar He Ⅱ emission line at 30.4 nm (e.g. Frahm
et al.,  2006a, b).  These peaks are superimposed on a smooth and
continuous background up to an apparent knee at 60–70 eV asso-

ciated  with  the  rapid  drop  in  solar  irradiance  at  wavelengths

shorter  than  17  nm  (e.g. Sakai  et  al.,  2015; Peterson  et  al.,  2016).

With increasing energy, another less prominent peak structure oc-

curs near 500 eV associated with inner shell  Auger electrons due

to  X-ray  ionization  (e.g. Mitchell  et  al.,  2000).  Up  to  now, in  situ
measurements  of  photoelectrons  have  been  made  on  various

spacecrafts,  such as the Mars Global Surveyor (e.g. Mitchell  et al.,

2000; Trantham  et  al.,  2011; Liemohn  et  al.,  2012; Xu  SS  et  al.,

2016a),  the Mars Express (e.g. Frahm et al.,  2006a, b, 2010; Han X

et  al.,  2014),  and  the  Mars  Atmosphere  and  Volatile  Evolution

(MAVEN)  (e.g. Sakai  et  al.,  2015; Peterson  et  al.,  2016; Xu  et  al.,

2016b, 2017a, b), among others.

Upon production via either primary or secondary ionization, pho-

toelectrons  in  the  Martian  upper  atmosphere  are  subject  to  a

number of collision processes including inelastic collisions with at-

mospheric neutrals leading to excitation or ionization (e.g. Bhard-

waj  and  Jain,  2009),  and  Coulomb  collisions  with  ionospheric

thermal electrons (e.g. Stamnes and Rees, 1983). Assuming steady

state,  and at  altitudes  where  the  effect  of  transport  is  negligible,

photoelectron  production  and  loss  should  be  in  balance  for  any

given  energy  and  direction,  a  situation  frequently  referred  to  as

local energy degradation (e.g. Mantas and Hanson, 1979).

This study is devoted to a verification of local energy degradation

of photoelectrons observed in the Martian upper atmosphere. For
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such  a  purpose,  information  regarding  a  number  of  controlling

factors is  necessary,  such  as  the  solar  EUV/X-ray  flux,  the  photo-

electron  intensity,  the  neutral  and  electron  densities,  as  well  as

the  electron  temperature.  Simultaneous  measurements  of  the

above parameters became available with the arrival of MAVEN at

Mars on 21 September 2014 (Jakosky et al., 2015).

This  paper  is  organized  as  follows.  We  describe  in  Section  2  the

formulism  used  to  calculate  various  photoelectron  production

and loss rates.  In Section 3 we present the main results  from our

detailed calculations  based  on  a  multi-instrument  data  set  accu-

mulated over a representative dayside MAVEN orbit.  Finally,  con-

clusions are summarized in Section 4.

2.  Formulism
The various  photoelectron  production  and  loss  processes  con-

sidered  in  this  study  include  primary  and  secondary  ionization

(Nicholson et al., 2009), inelastic collisions with atmospheric neut-

rals (Bhardwaj and Jain, 2009), and Coulomb collisions with iono-

spheric thermal electrons (Stamnes and Rees, 1983).

P(ine)eFollowing Lavvas et al.  (2011),  the primary production rate, ,

is obtained from

P(pri)e (z, E) = 1
4π ∑

k,j
F∞ (λ)e−τ(z,θ,λ)σ(pi)k,j (λ)Nk (z) , (1)

σ(pi)k,j

E = hc/λ − E(th)k,j

E(th)k,j
Psece

where z is  the  altitude, E is  the  photoelectron  energy, λ is  the

wavelength, F∞ is the solar flux at the top of the atmosphere, 

is the photoionization cross section for neutral species, k, and ion-

ization  channel, j, Nk is  the  neutral  density,  and τ is  the  optical

depth along the line-of-sight  with θ being the solar  zenith angle

(SZA). For a given species and a given channel, the energy of the

released  photoelectron  is  where h is  the  Planck

constant, c is  the speed of light,  and  is the respective ioniza-

tion potential. Similarly, the secondary ionization rate, , is ob-

tained with

P(sec)e (z, E) = ∑
k,j

Φe (z, E′) σ(ei)k,j (E′)Nk (z) , (2)

σ(ei)k,j

E = E′ − E(th)k,j

where Φe is  the  mean  differential  photoelectron  intensity,  is

the electron impact ionization cross section, and the energy of the

released  secondary  photoelectron, E,  is  connected  to  the  energy

of the impacting primary photoelectron, E’, via .

P(ine)e
L(ine)e

Collisions  with  atmospheric  neutrals  cause  both  production  and

loss of photoelectrons. The respective rates, denoted as  and

, are given by

P(ine)e (z, E) = ∑
k,j
∫ ∞

E
Φe (z, E′) Rk,j (E′, E)Nk (z)dE′, (3)

and

L(ine)e (z, E) = ∑
k,j

Φe (z, E) σ(ine)k,j (E)Nk (z) , (4)

σ(ine)k,j
where Rk,j is  the  redistribution  function  and  is  the  inelastic

collision cross section for electron impact. The former reflects the

probability that a photoelectron with energy E’ is degraded to en-

ergy E via various channels of collisional relaxation.

L(cmb)
eThe photoelectron loss rate via Coulomb collisions, ,  can be

calculated from

L(cmb)
e (z, E) = −Ne (z) ∂ [S (z, E)Φe (z, E)]

∂E
(5)

with Ne being the thermal electron density and S being the stop-

ping cross section formulated as

S (z, E) = 3.37 × 10−12

E0.94[Ne (z)]0.03
[ E − Ee (z)
E − 0.53Ee (z) ]2.36

(6)

in unit of eV·cm2 following Stamnes and Rees (1983). In equation

(6), Ee=8.618×10–5Te with Te being the electron temperature in K.

The formulism  outlined  above  is  implemented  in  this  study  as-

suming  that  all  relevant  parameters  are  isotropic  (Lavvas  et  al.,

2011).  The  redistribution  function  is  parameterized  similar  to

Lavvas  et  al.  (2011).  All  necessary  photon  and  electron  impact

cross sections are adapted from our previous compilation in Cui J

et al. (2011).

3.  Photoelectron Balance During MAVEN Orbit No. 2909
In this  section,  we  verify  the  condition  of  local  energy  degrada-

tion  for  photoelectrons  with  the  aid  of  the  multi-instrument

MAVEN data set, taking orbit No. 2909 on 28 March 2016 as an ex-

ample. The periapsis altitude of this orbit is 158 km at a SZA of 67°.

The  10.7  cm  solar  radio  index  at  Earth  during  the  period  is  87  in

solar  flux  unit  (10–22W·m–2), indicating  low  solar  activity  condi-

tions. The sampled regions are within the northern hemisphere of

the planet characterized by draped magnetic field lines (e.g. Brain

et al., 2006).

We consider a background neutral atmosphere composed of CO2,

O,  N2,  and  CO,  with  their  densities  extracted  from  the  MAVEN

Neutral Gas and Ion Mass Spectrometer (NGIMS) measurements in

the closed neutral source mode (Mahaffy et al., 2015). The thermal

electron  density  is  assumed  to  be  equal  to  the  total  ion  density

based on the NGIMS measurements in the open source ion mode

(Benna et al., 2015), and the electron temperature is based on the

characteristics  of  the  current  voltage  relation  obtained  by  the

MAVEN Langmuir Probe and Waves (LPW) (Ergun et al., 2015). The

incident  solar  EUV/X-ray  flux  is  adapted  from  the  solar  spectral

model  at  Mars  constructed  from  the  Flare  Irradiance  Spectral

Model–Mars  and  calibrated  with  the  MAVEN  Ultraviolet  Monitor

band  irradiance  data  (Thiemann  et  al.,  2017). Finally,  the  photo-

electron energy  distribution  is  available  from  the  mean  differen-

tial intensities of energetic electrons measured by the MAVEN Sol-

ar  Wind  Electron  Analyzer  (SWEA)  (Mitchell  et  al.,  2016).  Each

SWEA spectrum is corrected for spacecraft charging using the po-

tential derived from MAVEN Suprathermal and Thermal Ion Com-

position measurements (McFadden et al., 2015).

An  example  of  our  calculations  of  the  photoelectron  production

and loss rates is presented in Figures 1 and 2. In Figure 1, we show

from left  to right  the variations of  neutral  densities  (panel  a),  ion

and electron  densities  (panel  b),  neutral  and  electron  temperat-

ures (panel  c),  spacecraft  charging  (panel  d),  and  energetic  elec-

tron  distribution  (panel  e)  along  the  MAVEN  trajectory.  Only  the

inbound  portion  of  the  orbit  is  included  to  reduce  possible  wall
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contamination on the NGIMS antechamber walls, a well-known ef-

fect  that  is  known  to  occur  on  other  mass  spectrometers  with  a

similar design (Cui J et al., 2009). The electron temperatures meas-

ured  by  the  LPW  are  known  to  be  overestimated  due  to  surface

resistance  or  capacitance  on  the  instrument  sensor  (Ergun  et  al.,

2015),  as  indicated  by  the  fact  that  the  electron  temperature  at

low altitudes is substantially higher than the neutral temperature

but  thermal  coupling  between  all  species  is  expected  there  (e.g.

Matta et al., 2014, Peterson et al., 2018). Here the constant neutral

temperature given by the solid line in black in panel  c  is  derived

from  the  isothermal  fitting  to  the  atmospheric  Ar  density  profile

(Stone et al., 2018). Similar to Cui et al. (2019), we adopt an empir-

ical method to correct for the LPW measurements of electron tem-

perature below  180  km.  For  comparison,  the  measured  and  cor-

rected  electron  temperature  profiles  are  indicated  by  the  solid

and dashed lines  in  red in  panel  c.  The distinctive  photoelectron

characteristics, such as the peak structure at 22–27 eV, the knee at

60–70 eV, and another peak structure at 500 eV, are clearly seen in

the photoelectron energy spectrogram in panel e.

Based on the MAVEN measurements presented in Figure 1, equa-

tions (1)–(6)  are  used  to  calculate  various  photoelectron  produc-

tion and loss rates, which are displayed in Figure 2 including pro-

duction via  primary (panel  a)  and secondary (panel  b)  ionization,

production (panel c) and loss (panel d) via inelastic collisions with

atmospheric neutrals,  and  loss  via  Coulomb  collisions  with  iono-

spheric thermal electrons (panel e). For a closer look, we compare

in Figure  3 the energy  distributions  of  these  rates  at  two repres-

entative altitudes: 160 km near the periapsis (panel a) and 200 km

(panel b). Both panels suggest that the contribution of secondary

ionization  is  of  minor  importance,  consistent  with  the  relatively

small  ionization  efficiency  reported  by Cui  J  et  al.  (2018) also

based on  the  MAVEN  data.  For  the  two  photoelectron  loss  pro-

cesses, the  relative  importance  of  Coulomb  collisions  clearly  in-

creases  with  decreasing  photoelectron  energy.  Meanwhile,  it  is

more prominent  at  higher  altitudes,  likely  connected  to  an  in-

creasing  thermal  electron  to  neutral  density  ratio  which  is

3.7×10–5 at 160 km and 3.3 × 10–4 at 200 km, respectively. Accord-

ing  to Figures  2 and 3,  the  photoelectron  balance  is  controlled

mainly  by  primary  production,  as  well  as  by  production  and  loss

via inelastic collisions with atmospheric neutrals, over the energy

range considered here (see below).

The calculated  photoelectron  production  and  loss  rates  are  sub-

ject  to  several  sources  of  uncertainty.  The  typical  uncertainty  is

10% in solar flux according to Thiemann et al.  (2017) and 10% in

photoionization cross section according to Heays et al. (2017), im-

plying a combined uncertainty of 14% in primary ionization where

the small uncertainty of less than 1% in neutral density is ignored.

The  uncertainty  in  differential  photoelectron  intensity  is  about

10% (Mitchell  et al.,  2016) and the uncertainty in electron impact

cross  section  is  about  5%  (Itikawa,  2002). These  lead  to  a  com-

bined  uncertainty  of  11%  in  secondary  ionization.  Following  the

same line  of  reasoning,  we  estimate  the  uncertainties  in  photo-
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Figure 1.   The variations of neutral densities (a), ion and electron densities (b), neutral and electron temperatures (c), spacecraft charging (d), and

photoelectron energy distribution (e) along the inbound portion of MAVEN orbit No. 2909 on 28 March 2016, combining the multi-instrument

data set acquired by several relevant MAVEN instruments (see text for details). The electron density is assumed to be identical to the total ion

density. The neutral temperature profile is estimated from the isothermal fitting to the Ar density data; the electron temperature is corrected for

the known effect of surface resistance or capacitance on the Langmuir Probe and Waves instrument sensor. The measured and corrected electron

temperature profiles are distinguished as the solid and dashed lines in red in panel c.
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Figure 2.   The full altitude variations of different photoelectron production and loss rates along the inbound portion of MAVEN orbit No. 2909,

including production via primary (a) and secondary (b) ionization, production (c) and loss (d) via inelastic collisions with atmospheric neutrals, as

well as loss via Coulomb collisions with ionospheric thermal electrons (e).
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electron production and in loss  via  inelastic  collisions both to be

11%  as  well.  The  uncertainty  in  loss  via  Coulomb  collisions  is

primarily determined by the uncertainty in thermal electron dens-

ity, which is 25% according to Benna et al. (2015). The uncertainty

in electron temperature, though as large as 20% according to Er-

gun et al.  (2015), is not important here due to the insensitivity of

the  stopping  function  to  this  parameter  (see  equation  (6)).  From

all the above, we conclude that the uncertainties in total produc-

tion and loss to be 21% and 27%, respectively. However, we cau-

tion that a small uncertainty in spacecraft charging would lead to

large uncertainties  in  the  calculated production and loss  rates  at

energies where  an  inherent  rapid  change  in  differential  photo-

electron intensity is expected, i.e. near the peaks at 22–27 eV and

near the knee at 60–70 eV. To avoid such an undesired situation,

we evaluate below the condition of local energy degradation over

a restricted energy range — from 30 to 55 eV only.

Pprie Psece Pinee

Linee Lcmb
e

Figure 2 reveals that,  at  160 km, the total  photoelectron produc-

tion rate, which is the sum of , ,  and , is generally con-

sistent with the total  loss rate,  which is  the sum of  and ,

with  a  median  difference  of  17%  for  any  given  energy  between

30–55 eV. At 200 km, the agreement between production and loss

is  improved,  with  a  median  difference  of  just  13%.  Both  are  well

below  the  combined  measurement  uncertainties  quoted  above,

implying that  the  condition  of  local  energy  degradation  is  satis-

fied. A more detailed comparison between the photoelectron pro-

duction  and  loss  rates  is  presented  in Figure  4 over  the  altitude

range of 160 to 250 km for several arbitrarily chosen energies (of

30.9 eV,  43.8  eV,  and  55.2  eV,  respectively)  where  the  region  en-

compassing the  combined  measurement  uncertainty  is  shad-

owed for  reference.  The figure  clearly  indicates  that  local  energy

degradation is a very good approximation in the dayside Martian

ionosphere at altitudes considered here.

Interestingly,  the analysis presented here reveals no evidence for

photoelectron transport over the considered energy range, imply-

ing  that  either  transport  occurs  within  the  more  tenuous  part  of

the Martian upper atmosphere (e.g. Cui J et al.,  2011) or alternat-
ively a large potential drop is present in the distant regions to re-
flect  photoelectrons  escaping  back  towards  the  planet  (e.g. Kit-
amura  et  al.,  2015).  A  thorough  investigation  of  such  an  issue
clearly  relies  on  the  evaluation  of  local  energy  degradation  over
the full energy range measured by the SWEA, which is left for fol-
low-up studies.

4.  Concluding Remarks
Photoelectrons  are  created  by  solar  EUV/X-ray  ionization  and
serve as an important link between solar radiative energy and at-
mospheric  thermal  energy  (Fox  et  al.,  2008,  and  references
therein).  Observations  have  been  made  of  photoelectrons  near
many Solar  System objects  such as  Earth,  Mars,  Venus,  and Titan
(Coates et al., 2011). At altitudes where transport is negligible, the
balance of  photoelectrons is  controlled by local  energy degrada-
tion, a condition for which production is strictly balanced by loss
(e.g. Lavvas et al., 2011).

In  this  study,  we  attempt  to  verify  the  condition  of  local  energy
degradation with the aid of the combined MAVEN measurements
that  provide  a  complete  set  of  the  physical  parameters  required
for  calculating  various  photoelectron  production  and  loss  rates.
Taking MAVEN orbit  No.  2909 as an example,  our calculations in-
dicate  that  photoelectron  production  occurs  mainly  via  primary
ionization as well as degradation from higher energy states via in-
elastic  collisions  with  ambient  neutrals,  and  photoelectron  loss
occurs  mainly  via  degradation  towards  lower  energy  states  also
via  inelastic  collisions,  but  the  effect  of  Coulomb  collisions  with
ambient thermal  electrons  becomes  important  for  photoelec-
trons less energetic than 10 eV. The condition of local energy de-
gradation is evaluated over the energy range of 30–55 eV, chosen
to reduce the influence of the uncertainty in spacecraft charging.
Our analysis reveals that such a condition is very well satisfied for
dayside photoelectrons  up  to  at  least  230  km.  It  will  be  interest-
ing to examine in follow-up studies the questions of at what alti-
tudes and  what  energies  the  condition  of  local  energy  degrada-
tion is broken and transport becomes important.
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