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Abstract: Jupiter’s magnetic field is thought to be generated in its deep metallic hydrogen region through dynamo action, yet the
detailed dynamic process remains poorly understood. Numerical simulations have produced Jupiter-like magnetic fields, albeit using
different control parameters and reference state models. In this study, we investigate the influence of different reference state models,
based on ab initio calculations and based on the polytropic equation of state. In doing so, we perform five anelastic convection dynamo
simulations that can be divided into two groups. In each group, different reference states are used while other control parameters and
conditions are set to be identical. We find the reference state model can be very influential for the simulations in which buoyancy force is
dominant over the Lorentz force. In this regime, different dynamical outcomes can be attributed to the effective buoyancy force resulting
from different reference states. For simulations in which the Lorentz force is dominant over the buoyancy force, however, dynamo actions
tend to be insensitive to different reference state models. If Jupiter’s dynamo is in a strong field regime, i.e., the Lorentz force plays a
dominant role, our numerical results suggest that Jupiter’s internal reference state, which remains poorly constrained, may play a minor
role in the dynamo process of the planet.
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1.  Introduction
It is widely accepted that planetary magnetic fields are generated

in  an  electrically  conducting  fluid  layer  in  their  deep  interiors

through  the  dynamo  process  (Jones,  2011).  Therefore,  planetary

magnetic  fields  provide  a  window  to  infer  the  internal  structure

and  dynamics  of  planets  (Stevenson,  1982a, 2003; Guillot,  2005;

Schubert and Soderlund, 2011; Liu SH et al., 2020). Among our sol-

ar  system’s  planets,  Jupiter  exhibits  the strongest  magnetic  field,

which is thought to be generated in its metallic hydrogen region

(Stevenson,  1982a; Guillot,  2005; Jones  et  al.,  2011).  Since  2016,

NASA’s  Juno  spacecraft  has  been  measuring  Jupiter’s  magnetic

field and gravity field with unprecedented precision, creating data

that  can  be  used  to  infer  the  internal  structure  and  dynamics  of

the planet (Bolton et al., 2017a, b).

Pre-Juno observations revealed that Jupiter bears an Earth-like di-

pole-dominated  magnetic  field,  though  the  dipole  moment  of

Jupiter is much larger than that of Earth (Connerney et al.,  1998).

Recent  studies  based  on  Juno’s  observations  have  found  that

Jupiter’s  magnetic  field  also  has  a  significant  non-dipolar  part  in

the  northern  hemisphere  (Moore  et  al.,  2018). Numerical  simula-

tions of Jupiter’s dynamo action can produce Jupiter-like magnet-

ic fields (Gastine et al., 2014; Jones, 2014; Duarte et al., 2018; Glatz-

maier, 2018; Wicht et al., 2019; Tsang and Jones, 2020), though nu-

merical  models  are  intentionally  simplified  and  use  unrealistic

control  parameters  due  to  the  restrictions  of  computational

power. Nevertheless,  numerical  modeling  remains  a  useful  ap-

proach to understand the physical  processes and mechanisms of

Jupiter’s magnetic field generation.

Jupiter’s  dynamo is modeled as convective perturbations around

a  nearly  adiabatic  and  hydrostatic  reference  state  —  conditions

prescribed  to  make  numerical  simulation  feasible  (Jones,  2014).

The reference state depends on physical properties and the equa-

tion of  state  of  the  planetary  interior,  which  are  not  well  con-

strained. Two types of fully convective reference state models are

usually used in Jupiter’s dynamo simulations. One is based on ab
initio calculations of Jupiter’s interior (Jones, 2014); the other type

is  based on the polytropic and ideal  gas assumptions (Gastine et
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al.,  2014).  Different  reference  models  result  in  different  densities
and temperature gradients within the planet, and thus lead to dif-
ferent buoyancy forces when other control parameters and condi-
tions  are  the same.  Therefore,  the reference state  prescribed can
influence  the  operation  of  dynamo  action  and  the  generated
magnetic fields. Given the uncertainty of the background state of
Jupiter,  it  is  important  to  characterize  how sensitive  the dynamo
process is to the reference state model employed in each simula-
tion.

Previous studies have used a variety of reference states in Jupiter’s
dynamo  simulations  including  both  the ab  initio model  (Jones,
2014; Dietrich and Jones, 2018; Glatzmaier, 2018; Tsang and Jones,
2020) and polytropic models (Gastine and Wicht, 2012; Gastine et
al.,  2014; Duarte  et  al.,  2018; Wicht  et  al.,  2019). Gastine  et  al.
(2012) studied the  influence  of  the  density  stratification  on  dy-
namos and found that stronger density stratification leads to non-
dipolar magnetic fields, but they used polytropic reference states
in  all  simulations. Duarte  et  al.  (2018) performed  more  than  60
simulations with varying reference states (including both ab initio
models  and  polytropic  models),  electrical  conductivity  profiles,
and  control  parameters  to  explore  the  sensitivity  of  the  dynamo
behavior  to  those  factors.  They  found  that  the  reference  model
tends to be not so critical to the dynamo action compared to the
other internal properties,  though detailed analysis and comparis-
ons are required.

In this  study,  we investigate how choice of  the reference density
and  temperature  profiles  influence  the  inferred  dynamos  and
generated magnetic  fields.  We  carry  out  two  groups  of  convec-
tion-driven dynamo based on the anelastic  approximation.  With-
in each group, we test different reference models of both ab initio
and  polytropic  types  but  keep  all  other  control  parameters  and
conditions identical.  It  turns  out  that  the  influence  of  the  refer-
ence state on the dynamo action depends on the regime of force
balance. When the buoyancy is  dominant over the Lorentz force,
different reference states can lead to very different dynamical out-
comes.  However,  when  the  Lorentz  force  is  dominant  over  the
buoyancy, the dynamo action is insensitive to the reference state.

The remaining part of the paper is organized as follows. Section 2
introduces  the  numerical  model  of  dynamo  simulations  and  the
reference  state.  Section  3  presents  the  numerical  results  of  the
two groups. The paper is closed with a discussion and conclusion
in Section 4. 

2.  Numerical Model 

2.1  Governing Equations

ri ro
η = ri/ro Ω = Ωeeez

ν κ
σ (r) ,

λ (r) =
1/ (μ0σ) μ0

ρ (r) T (r)

We  model  Jupiter’s  dynamo  region  as  a  rotating  spherical  shell

with  inner  radius  and  outer  radius  (i.e.,  the  radius  ratio

),  which  rotates  at .  The  spherical  shell  is  filled

with fluid of homogenous viscosity  and thermal diffusivity , but

radially  varied  electrical  conductivity  which  mimics  the

metallic hydrogen region of Jupiter. The magnetic diffusivity 

 is thus also a function of the radius, where  is the vacu-

um  magnetic  permeability.  The  dynamo  action  is  driven  by

thermal  convection  under  the  anelastic  approximation,  which

considers  the  density  and  temperature  variation  along

the  radius  but  filters  out  sound  waves  to  avoid  the  smaller  time

step  (Braginsky  and  Roberts,  1995; Lantz  and  Fan  Y,  1999).  The

convection-driven dynamo process is described as small perturba-

tions  around  an  adiabatic  and  hydrostatic  reference  state  that  is

spherically symmetric, i.e., depending on the radius only.

The  dimensional  equation  of  motion  is  given  as  (Jones  et  al.,

2011),

∂uuu
∂t

− uuu × ω = −
∇p′

ρ
− ∇

1
2
uuu2 +

1

ρ
jjj × BBB − 2Ω × uuu +

ν
ρ∇ ⋅ S +

ρ′ggg

ρ
, (1)

uuu BBB p′

jjj = 1
μ0

∇ × BBB

S

where  is the velocity, ω is the vorticity,  is the magnetic field, 

is  the  pressure  perturbation,  is  the  current  density

and  is the rate-of-strain tensor given by:

Sij = 2ρ [eij − 1
3
δij∇ ⋅ uuu] , eij =

1
2
(∂ui

∂xj
+

∂uj

∂xi
) . (2)

The mass  conservation under  the  anelastic  approximation is  giv-

en as

∇ ⋅ ρuuu = 0. (3)

Conservation of energy gives

ρ T (∂s
∂t

+ uuu ⋅ ∇s) = ∇ ⋅ (κρ T∇s) + Qv + Qj, (4)

s Qv

Qj

where  is the specific entropy, and κ is the entropy diffusivity, 

and  are viscous heating and Joule heating, respectively.

The magnetic induction equation reads

∂BBB
∂t

= ∇ × (uuu × BBB) + ∇ × (λ∇ × BBB), (5)

and the magnetic field is divergence-free:

∇ ⋅ BBB = 0. (6)

d = ro − ri
τν = d2/ν v/d

The  above  equations  are  solved  in  a  dimensionless  form.  Using

the shell thickness  as the length scale, the viscous diffu-

sion time  as the time scale,  as the velocity scale and

the magnetic unit (ρ0 μ0 λi Ω)1/2, the dimensionless equations gov-

erning the anelastic convection dynamo are given as (Jones et al.,

2011; Duarte et al., 2018).

(∂uuu
∂t

+ uuu ⋅ ∇uuu) = −∇ (p′
ρ̃
)− 2

E
eeez×uuu−

Ra
PrDi

dT̃
dr

seeer+
1

PmEρ̃
(∇×BBB)×BBB+∇⋅S,

(7)

∂BBB
∂t

= ∇ × (uuu × BBB) − 1
Pm

∇ × (λ̃∇ × BBB), (8)

ρ̃T̃ (∂s
∂t

+ uuu ⋅ ∇s) = 1
Pr
∇ ⋅ (κρ̃T̃ ∇s) + PrDi

Ra
[Qv +

λ̃
Pm2E

(∇ × BBB)2] , (9)

∇ ⋅ (ρ̃uuu) = 0, (10)

ρ̃ = ρ (r) /ρ0 T̃ = T (r) /T0

λ̃ = λ (r) /λi = σ (r) /σ i = 1/σ̃

λi

The  dimensionless  density ,  temperature ,

and  magnetic  diffusivity  represent  the

dimensionless  reference state  profiles.  Note  that  the  density  and

temperature are normalized by the dimensional values at the out-

er  boundary  while  the  magnetic  diffusivity  is  normalized  by  the

dimensional magnetic diffusivity at the inner boundary . The de-

tailed reference states will be presented in Section 2.3.
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From  now  on,  all  physical  quantities  are  given  in  dimensionless
form unless otherwise stated.

Ra E Pr
Pm

Based  on  the  aforementioned  normalization,  the  dynamo  model
is  controlled  by  the  following  dimensionless  parameters,  i.e.,
Rayleigh  number ,  Ekman  number ,  Prandtl  number , mag-
netic Prandtl number , the dissipation number:

Ra =
αogoTo, d

3Δs
cpκv

, E = v
Ωd2

, Pr = v
κ , Pm = v

λi
, Di =

α0g0d
cp

, (11)

αo

Δs
go

where  is the thermal expansion coefficient at the outer bound-
ary,  is  the  entropy  difference  between  the  inner  and  outer
boundaries and  is the gravity at the outer boundary.

The outer  boundary is  set  as  stress-free and insulating,  while  the
inner  core  is  regarded  as  rigid  and  finitely  conductive;  constant
entropy is applied on both boundaries. 

2.2  Reference States

ρ̃
T̃

As mentioned before, the dynamo process is modeled as perturb-
ations around a hydrostatic reference state, which remains poorly
constrained. The main objective of this paper is to investigate the
influence  of  different  reference  states  on  the  dynamo  process.
Previous  studies  usually  used  two  different  types  of  reference
state models (Gastine et al., 2014; Jones, 2014; Duarte et al., 2018;
Wicht et  al.,  2019; Tsang and Jones,  2020). The first  type of  refer-
ence  state  is  the  so-called ab  initio model,  which  is  based  on ab
initio simulation of  Jupiter’s  interior.  The reference density  and
temperature  profiles  are  given  by  polynomials  fitted  to  the ab
initio simulations results of French et al. (2012). The gravity is self-
consistently determined by the density profile, and the buoyancy
force is directly related to the temperature gradient

1

Diα̃T̃

dT̃
dr

= −g̃, (12)

α̃ = α/αo g̃ = g/gowhere  is  the normalized thermal  expansivity,  is
the normalized gravity.

p̃ = ρ̃1+1/m, p̃ = ρ̃T̃
ρ̃ = T̃m m = 1/ (cp/cν − 1)

r
α̃ = 1/T̃

Nρ = ln [ ρ̃ (ri)
ρ̃ (ro) ]

The  second  type  of  reference  state  is  based  on  the  polytropic
model, i.e.,  and the ideal gas assumption , lead-

ing  to ,  where  is  the  polytropic  index.  In

order to determine the density and temperature profiles, we need
to  make  use  of  the  relation  between  the  temperature  gradient
and the gravity given in Equation (12) and prescribe a gravity pro-
file.  Following Duarte  et  al.  (2018), we assume the gravity  is  pro-
portional  to  the  radius ,  which  suggests  that  the  temperature
gradient  also  is  proportional  to  the  radius,  given  for  the

ideal gas. As noted by Duarte et al. (2018), such a gravity profile is
unrealistic for Jupiter. Nevertheless, it serves as a simplified mod-
el to investigate the influence of the reference state model on the
dynamo  process.  Based  on  these  assumptions,  the  reference
density,  and  temperature  profiles  are  then  uniquely  determined
by  the  polytropic  index m and  the  number  of  density  scale

heights  in the layer.

T̃ (r) , ρ̃ (r) dT̃ (r) /dr
In  this  study,  we  perform  two  groups  of  dynamo  simulations.  In
each group, we consider different reference states while keeping
other control parameters and conditions the same. The reference
state profiles of  and  used in Group A and Group

B are shown in Figure 1a and 1b, respectively.

For the  electrical  conductivity,  we  use  profiles  given  by  continu-
ous equations (Gómez-Pérez et al., 2010):

σ̃(r) = ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 + (σ̃m − 1) ( r − ri

rm − ri
)a (r < rm),

σ̃mexp [a ( r − rm
rm − ri

) σ̃m − 1

σ̃m
] (r ≥ rm), (13)

rm a σmwhere  is the transition radius,  is the decay rate,  is the con-
ductivity at the transition point. Figure 2 shows the electrical con-
ductivity  profiles  we  used  in  Group  A  (blue  curve)  and  Group  B
(red curve). Detailed parameters of the reference state models are
also given in Table 1. 

2.3  Numerical Method
The  fully  nonlinear  MHD  Equations  (1)–(3)  are  solved  using  an
open-source  MHD  code,  MagIC  (https://magic-sph.github.io/),
which employs  the pseudo-spectral  method based on an expan-
sion  of  spherical  harmonics  in  angular  direction,  and  Chebyshev
polynomials in the radial direction (Gastine et al., 2012). The code
makes use of the fast spherical harmonic library SHTns (https://ns-

chaeff.bitbucket.io/shtns/) (Schaeffer, 2013).

0.99RJ

0.958RJ

To avoid the time step getting too small, the simulations of Group
A are cut at . The three simulations of Group A begin with a
weak magnetic  field.  We  use  73  radial  grid  points  and  320  azi-
muthal grid points in all  Group A simulations. The two models in
Group B use similar parameters as in the case A of Jones (2014), in
which  the  cut-off  radius  is .  We  use  the  161  radial  grid

points and 384 azimuthal grid points in both Group B simulations.
The  convergence  of  the  numerical  simulations  was  carefully
checked by examining the energy spectra of the simulations and
by increasing the resolution for some simulations. 

2.4  Diagnostic Parameters
The  kinetic  energy  and  magnetic  energy  are  defined  as  the
volume integral over spherical shell (Jones, 2011).

Ek =
1
2
∫
V
ρ̃uuu2dV, Em = 1

2
∫
V

1
2μ0

BBB2dV. (14)

Re Rm
Λ

Three dimensionless diagnostic parameters are used here to qual-
itatively characterize the properties of the solutions: the Reynolds
number , the magnetic Reynolds number , the Elsasser num-
ber :

Re =
urmsd
v , Rm =

urmsd
λi

, Λ =
B2
rms

μ0λiρoΩ
, (15)

urms Brms

λi

where the  and  are the RMS values of  velocity  and mag-
netic field . 

3.  Numerical Results
We perform two groups of simulations to explore the influence of
reference states. In each group, we use the same control paramet-

ers, electrical  conductivity  profiles,  and initial  conditions,  but  dif-
ferent reference  states  of  the  density  and  temperature  are  con-
sidered.  Detailed  information  of  all  simulations  is  summarized  in
Table 1. 
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3.1  Energy
Figure  3 shows  the  time  evolution  of  the  magnetic  energy  and
kinetic  energy  of  all  simulations,  which  gives  an  overview  of  our
numerical results.  In Group A, dynamo action is sustained for the
polytropic  reference  states  (A2  and  A3)  while  the  case  using  the
ab initio reference state (A1) fails to sustain a dynamo (Figure 3a).
The  saturated  kinetic  energy  of  the ab  initio case  is  also  much
smaller than that of the polytropic cases, as we can see from Fig-
ure 3b. These differences are essentially due to the effective buoy-
ancy force being weaker in A1 compared to A2 and A3, as one can
see from Figure 1a,  despite the nominal Ra being the same in all
cases.

In Group B,  both the polytropic and ab initio reference states (B1
and B2) lead to sustained dynamo action, with comparable mag-
netic energy (Figure 3c), although the kinetic energy in B1 (ab ini-
tio) is slightly smaller than that in B2 (polytropic). Note that the ef-
fective buoyancy forces are quite different between B1 and B2, as
one can see from Figure 1b.

As  we  can  see  from  the  above  results,  the  influence  of  different
reference  states  on  dynamo  action  can  be  either  significant
(Group  A)  or  negligible  (Group  B).  It  turns  out  that  the  different
behavior in Groups 1 and 2 may be explained by the different re-
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Figure 1.   Radial profiles of normalized temperature, density, and buoyancy term. Cyan line represents polynomial fitting to ab initio simulation

results of French et al. (2012). (a) The simulations in Group A are cut at ;  is the ratio of inner core radius to outer boundary radius.

(b) In Group B, the cut radius is  and the radius ratio .
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Figure 2.   Normalized electrical conductivity profile . The dotted

line represents the conductivity results from the ab initio simulation of

French et al. (2012). The blue (red) line represents the conductivity

profile used in Group A (Group B), which is determined by polynomial

Equation (13) with controlling parameters 

(Duarte et al., 2018).
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gimes of the force balance, as we will discuss in Section 3.3. 

3.2  Morphology of Flows and Magnetic Fields

uφ

Rm = 43

Figure 4 shows the radial velocity in the equatorial plane and the

zonal velocity (i.e., axisymmetric ) in the meridional plane of the

three  models  in  Group  A.  Convective  motions  in  A1  take  place

mainly in  the  outer  envelope  and  are  very  weak  in  the  deep  re-

gion  (Figure  4a)  due  to  the  effective  buoyancy  force  associated

with  the ab  initio reference  state.  Indeed,  such  convective  flows

( ) are not sufficient to sustain a dynamo, as we have shown

in Figure 4a. One can see more vigorous convection taking place

in  A2  and  A3,  which  use  the  polytropic  reference  states,  though

the  two  models  exhibit  slightly  different  flow  structures.  In  A3,

with  stronger  density  stratification,  convection  flow  with  small

scale  and  high  amplitude  occurs  primarily  in  the  outer  regions,

because of the increasing buoyancy along the radius (Gastine and

Wicht, 2012).

The polytropic models can produce very similar temperature and

density  profiles  as  the ab  initio model  at  some  parameters,  but

their buoyancy force term is generally larger because of their lar-

ger ‘artificial’  temperature  gradient.  Therefore,  stronger  convec-

tion  and  fluid  velocities  tend  to  be  generated  in  the  polytropic

models.

In all cases, mean zonal flows are developed due to the nonlinear

interactions  of  convective  flows  (Zhang  K,  1992; Christensen,

Nρ Rm Λ

Table 1.   Input dimensionless parameters and time-averaged results. The polytropic reference models are controlled by the number of density
scale heights  and polytropic index m.  and  are time-averaged magnetic Reynolds number and Elsasser number.

Model Nρ m (polind) η Initial B field Rm Λ Dynamo regime

Group A
Ra = 4.78e+07;

E = 1.0e−04; Pm = 2.0;
Pr = 1.0

A1 – – 0.2 Weak dipole 4.30E+01 – No dynamo

A2 4 2 0.2 Weak dipole 2.77E+02 1.54E+00 Multipolar dynamo

A3 5 2 0.2 Weak dipole 1.31E+02 6.21E-01 Multipolar dynamo

Group B
Ra = 3.60e+07;

E = 2.5e−05; Pm = 6.2;
Pr = 0.1

B1 – – 0.0963 Strong dipole 7.55E+02 2.16E+01 Strong dipole

B2 2.95 1.879 0.0963 Strong dipole 1.27E+03 1.47E+01 Strong dipole
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Figure 3.   Time series of energy of the Group A (upper panel) and Group B (lower panel). Time is in units of the viscous time scale.

Earth and Planetary Physics       doi: 10.26464/epp2021041 309

 

 
Yuan LH and Lin YF et al.: Jupiter’s dynamo simulations

 



2002; Heimpel et al.,  2005; Jones and Kuzanyan, 2009).  The zonal

flow in A1 is nearly geostrophic (Figure 4b) without the influence

of the Lorentz  force,  whereas  zonal  flows in  A2 and A3 are  influ-

enced  by  the  Lorentz  force,  leading  to  less  geostrophic  zonal

flows (Figure 4d and 4f).

Rm = 755 1270

Λ = 21.6

Figure 5 shows the radial velocity in the equatorial plane and the

zonal velocity in the meridional plane of two models (B1 and B2)

in  Group  B.  In  this  group,  the  two  models  exhibit  similar  flow

structures  with  vigorous  convection  in  the  whole  domain  and

strong prograde zonal flows near the equator,  although different

reference states are used. The effective buoyancy forces resulting

from  the ab  initio reference state  (B1)  and  the  polytropic  refer-

ence state (B2) are rather different (see Figure 1b), but both mod-

els produce sufficiently vigorous fluid motions (  and 

respectively) to drive dynamos and sustain strong magnetic fields

(  and 14.7 respectively). As we will show in section 3.3, the

Lorentz  force  plays  a  dominant  role  in  both  models  in  Group  B.

Therefore,  fluid  motions  are  strongly  influenced  by  the  Lorentz

force, but are less sensitive to the reference state that determines

the effective buoyancy force.

Figure 6 shows the radial magnetic field at the outer surface and

in a  meridional  plane for  the two cases  with successful  dynamos

in Group A. We can see that A2 and A3 produce dynamos with a

multipolar feature. Figure 7 shows the radial magnetic field for the

two models in Group B, both of which sustain similar dipole-dom-

inant magnetic fields at the outer surface. 
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Figure 4.   Snapshots of radial velocity ur (in dimensionless units of

the Reynolds number) in the equatorial plane (left panel) and zonal

flow uφ in the meridional plane (right panel) of three models in Group

A. (a−b): A1; (c−d): A2; (e−f): A3.
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Figure 5.   Snapshots of radial velocity ur (in dimensionless units of

the Reynolds number) in the equatorial plane (left panel) and zonal

flow uφ in the meridional plane (right panel) of three models in Group

B. (a–b): B1; (c–d): B2.
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Figure 6.   Snapshots of the radial magnetic field Br (in dimensionless

units of the Elsasser number) at the outer surface (left panel) and the

azimuthal plane (right panel) for A2 (a–b) and A3 (c–d) in Group A.
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3.3  Force Balance

Fl

As  we  have  shown,  the  influence  of  the  reference  states  can  be
very different for simulations in Group A and Group B. In this sec-
tion, we try to understand the different consequences of the refer-
ence state from the point of view of force balance. In doing so, the
RMS  of  each  force  term F in the  momentum  equation  is  calcu-
lated and decomposed into a sum of spherical harmonic contribu-
tions  (Aubert et al., 2017; Schwaiger et al., 2019):

F2
rms =

1
V
∫
V
FFF2dV =

lmax

∑
l=0

F2
l . (16)

l FI
FC FL FB

FP
l

Figure 8 shows the time-averaged RMS force terms as a  function
of  the  spherical  harmonic  degree  for  inertial  force  ( ),  Coriolis
force ( ), Lorentz force ( ), buoyancy force ( ) pressure gradient
( ). The Inertial force and viscous force are not shown here due to
their subdominant roles at smaller  (larger scales).

In all  simulations, the leading order force balance at a large scale
is the so-called quasi-geostrophic balance, i.e., a balance between
the Coriolis force and the pressure gradient, suggesting that rota-
tion plays a dominant role. The major difference between Group A
and Group B is  the relative contribution of  the Lorentz force and
the buoyancy force.  In  Group A,  the  buoyancy force  is  dominant
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Figure 7.   Snapshots of the radial magnetic field Br (in dimensionless

units of the Elsasser number) at the outer surface (left panel) and the

azimuthal plane (right panel) for B1 (a–b) and B2 (c–d) in Group B.
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l < 20 l < 30over the Lorentz force for  (A2) and  (A3). As A1 fails to

sustain a dynamo, the force balance of this case is not shown here.
In  contrast  to  Group  A,  the  Lorentz  force  dominates  over  the

buoyancy  force  at  almost  at  all  scales  in  both  B1  and  B2  in

Group B.

These results suggest that the influence of the reference state de-

pends on the regime of  force balance.  In Group A,  the buoyancy

force  plays  a  dominant  role  apart  from  the  leading  order  quasi-
geostrophic balance. Therefore, the contrast of the effective buoy-

ancy caused by the ab initio reference state and polytropic refer-

ence states lead to very different dynamical outcomes in Group A.
When  the  Lorentz  force  is  more  dominant  than  the  buoyancy

force,  different reference states lead to rather different buoyancy

forces,  but  the  dynamics  are  mainly  controlled  by  Lorentz  force
apart from  the  leading  order  quasi-geostrophic  balance.  There-

fore,  the  reference  states  tend  to  be  much  less  influential  in  the

dynamical outcomes.  This  is  broadly  in  line  with  theoretical  ex-
pectations  that  the  Lorentz  force  determines  the  flow  structures

and convective length scales (Zhang KK and Schubert, 2000), akin

to magnetoconvection. However, we should note that, in order to
reach this regime, the buoyancy force needs to be strong enough

to sustain a strong field dynamo. Our results in Group B are in line

with  previous  studies  (Gastine  and  Wicht,  2012; Jones,  2014;
Duarte et al., 2018), which found that dynamo action is not sensit-

ive to the reference density and temperature profiles used in the

simulations. 

4.  Discussion and Conclusion
This  paper  has  investigated  the  influence  of  different  reference
state  models  on  Jupiter-like  dynamo  simulations.  We  performed

two groups of dynamo simulations using different reference state

models.  In  each group,  we considered both the ab  initio and the
polytropic  types  of  reference  model  for  the  background  density

and  temperature  while  we  kept  other  control  parameters  and

conditions the same.

We  found  that  the  influence  of  the  reference  state  can  be  either

substantial (models in Group A) or minor (models in Group B), de-

pending  on  the  regime  of  the  force  balance.  Different  reference
profiles  of  the density and temperature lead to a rather different

buoyancy force despite the same Ra being used. When the buoy-

ancy  is  dominant  over  the  Lorentz  force,  varying  the  reference
state leads to very different convective motions and dynamo pro-

cesses. However, when a strong field dynamo is sustained and the

Lorentz force  becomes  dominant,  convective  motions  and  dy-
namo actions become less sensitive to the buoyancy force. There-

fore, both convective motions and generated magnetic fields are

similar  despite  rather  different  reference  states  being  used  in  a
strong field regime.

Our numerical  results  may  have  significant  implications  for  dy-

namo simulations of Jupiter and other giant planets. The internal
states  and  structures  of  giant  planets  remain  poorly  constrained

(Stevenson, 2020). Jupiter’s dynamo is expected to be in a strong

field regime (Aurnou and King, 2017), i.e., the Lorentz force plays a
dominant role,  so  our  numerical  results  suggest  that  the  uncer-

tainty of  the internal  structure has little influence on the planet’s

dynamo process. However, we note that there are several caveats
in  this  study  that  should  be  considered  in  the  future.  Firstly,  we
have  not  considered  the  influence  of  the  electrical  conductivity
profiles  when  changing  the  reference  density  and  temperature
profiles.  Indeed,  previous  studies  (Dietrich  and  Jones,  2018;
Duarte  et  al.,  2018; Wicht  et  al.,  2019) have  found  that  the  con-
ductivity  profiles  can  be  very  influential  on  the  dynamo  action.
Secondly, although different density and temperature profiles are
employed in this study, we assume that the whole simulation do-
main  is  convectively  unstable.  Stably  stratified  layers  may  exist
within giant planets; if so, they could change the magnetohydro-
dynamics  significantly  (Stevenson,  1982b; Cao  and  Stevenson,
2017; Christensen  et  al.,  2020).  Finally,  our  numerical  simulations
are limited to a small range of control parameters with moderate
Ekman numbers. Further simulations over a wide range of control
parameters  at  lower  Ekman  number  are  required,  though  such
simulations will be computationally demanding. 
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