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Abstract: Seismic hazard assessment and risk mitigation depend critically on rapid analysis and characterization of earthquake
sequences. Increasing seismicity in shale gas blocks of the Sichuan Basin, China, has presented a serious challenge to monitoring and
managing the seismicity itself. In this study, to detect events we apply a machine-learning-based phase picker (PhaseNet) to continuous
seismic data collected between November 2015 and November 2016 from a temporary network covering the Weiyuan Shale Gas Blocks
(SGB). Both P- and S-phases are picked and associated for location. We refine the velocity model by using detected explosions and
earthquakes and then relocate the detected events using our new velocity model. Our detections and absolute relocations provide the
basis for building a high-precision earthquake catalog. Our primary catalog contains about 60 times as many earthquakes as those in the
catalog of the Chinese Earthquake Network Center (CENC), which used only the sparsely distributed permanent stations. We also
measure the local magnitude and achieve magnitude completeness of ML0. We relocate clusters of events, showing sequential migration
patterns overlapping with horizontal well branches around several well pads in the Wei202 and Wei204 blocks. Our results demonstrate
the applicability of a machine-learning phase picker to a dense seismic network. The algorithms can facilitate rapid characterization of
earthquake sequences.
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1.  Introduction
During the past several years, the Southern Sichuan Basin of China

has  experienced  a  marked  increase  in  seismicity  near  hydraulic

fracturing (HF) sites, accompanied by increasing seismic hazard as

the maximum magnitudes of earthquakes has climbed (Figure 1)

(Lei  XL  et  al.,  2017, 2019; Meng  LY  et  al.,  2019; Sheng  MH  et  al.,

2020; Yang HF et al., 2020). Earthquakes associated with the devel-

opment and production of natural gas from tight formations pose

a threat not only to local communities but also to the safe produc-

tion  of  shale  gas  (Ellsworth,  2013; Holland,  2013; Clarke  et  al.,
2014; Atkinson et al., 2016; Bao XW and Eaton, 2016; Grigoli et al.,
2017; Yang  HF  et  al.,  2017).  Accurate  seismic  hazard  assessment
for  potentially  induced  earthquakes  depends  critically  on  how
well we know the stress conditions on those faults and the mech-
anisms  of  earthquake  induction  (Walsh  III  and  Zoback,  2016;
Schoenball and Ellsworth, 2017; Yu HY et al., 2019).

Various techniques, e.g., focal mechanism inversion, geodetic ob-
servations, and geologic surveys, have been widely used to invest-
igate fault structures after earthquakes occur, but all  of these ap-
proaches have limited resolution of small-scale fault structures, fo-
cal  depths,  and  hidden  faults  (Zhu  LP  and  Helmberger,  1996; Xu
WB et al., 2015; Yang HF, 2015; Zhou PC et al., 2019). This is partic-
ularly  true  for  induced  earthquake-prone  regions,  where  small
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faults,  including  many  that  are  unmapped,  have  proved  capable

of  hosting small-to-moderate-size  earthquakes  (Schoenball  et  al.,

2018).  Because  many  of  the  potentially  seismogenic  faults  have

limited or  no  surface  expression,  their  detailed  geometry  is  diffi-

cult  to  determine.  High-precision  earthquake  hypocenters  have

the potential  to  illuminate the activating faults  before damaging

earthquakes  occur  (Rubin et  al.,  1999; Waldhauser  and Ellsworth,

2002; Kao H and Shan SJ,  2007; Peng ZG and Zhao P,  2009; Yang

HF  et  al.,  2009; Schoenball  et  al.,  2018). During  hydraulic  fractur-

ing operations,  or  later  during  production,  a  near-real-time  pre-

cise earthquake  catalog  can  thus  inform  both  operators  and  au-

thorities  about  evolving  hazard  conditions  (Lee  et  al.,  2019; Lan-

genbruch et al., 2020; Schultz et al., 2020).

A combination  of  the  number  and  accuracy  of  picked  phase  ar-

rivals and the distribution of stations determines the quality of an

earthquake catalog (Lee and Stewart, 1981). The template match-

ing method (e.g., Gibbons and Ringdal,  2006; Peng ZG and Zhao

P,  2009; Yang HF et  al.,  2009; Skoumal  et  al.,  2015; Zhang M and

Wen  LX,  2015; Shelly  et  al.,  2016)  has  proven  to  be  a  powerful

means to expand seismicity catalogs but relies on the initial num-

ber of earthquakes and on the quality and completeness of recor-

ded  template  waveforms.  Unsupervised  search  for  earthquakes

using data mining methods are highly effective but currently im-

practical  for  real-time  application  (Yoon  et  al.,  2015, 2019). Con-

ventional  automatic  algorithms  (e.g.,  short-term  average/long-

term average STA/LTA method; Allen, 1978) work well for impuls-

ive P-wave arrivals but suffer from limited efficiency and accuracy

when signals are emergent, or noise levels are high. Moreover, in

densely instrumented  areas  where  the  data  flow  outpaces  seis-
mic analyst data processing rates,  many events must be skipped,
and S waves may go unanalyzed.

Machine-learning-based techniques have now matured to outper-
form routine analysis  methods (e.g., Ross  et  al.,  2018; Mousavi  et
al., 2019b; Wang J et al., 2019; Zhu WQ and Beroza, 2019). PhaseN-
et (Zhu WQ and Beroza, 2019) is a deep-neural-network-based ar-
rival-time  picking  method.  Although  it  was  trained  on  northern
California earthquakes, it has since demonstrated success in pick-
ing accurate arrival times of both P and S waves in diverse regions
and signal  environments,  which has  made it  an  attractive  choice
for  routine  earthquake  detection  (Zhang  M  et  al.,  2019; Liu  M  et
al.,  2020; Park  et  al.,  2020; Wang  MM  et  al.,  2020; Tan  YJ  et  al.,
2021).

In addition to robust arrival time picking, real-time seismic monit-
oring  and  catalog  construction  depend  crucially  on  accurate
event  association  and  location  techniques  (Johnson  et  al.,  1997;
Zhang M et al., 2019; Johnson, 2020). Rapid communication of ac-
curate information between network monitoring and oil field op-
erations, particularly  when  small  earthquakes  occur  in  rapid  suc-
cession,  is  fundamentally  important  for  safety  (Schultz  et  al.,
2020). Phase association methods follow a variety of strategies to
group candidate  picks  into  events  that  best  fit  the  predicted  ar-
rival  times  (e.g., Stewart,  1977; Ester  et  al.,  1996; Johnson  et  al.,
1997; Grigoli  et  al.,  2018; Bergen  and  Beroza,  2018; Ross  et  al.,
2019). Among them, the Rapid Earthquake Association and Loca-
tion (REAL) method (Zhang M et al., 2019) can determine the loca-
tion directly with sufficient accuracy for decision making, given a
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Figure 1.   Map view of the study area. (a) Red dots mark epicenters reported by the Chinese Earthquake Network Center (CENC) between 12

November 2015 and 18 November 2016. Black lines represent the surveyed faults (Liang et al., 2019). Seismic stations used by the CENC and in

this study are plotted with red and blue triangles, respectively. Shale gas well pads (HF wells) where drilling was completed by 2017 are shown

with filled hexagons (green, Wei202 block; cyan, Wei204 block). The open white hexagons mark the locations of some HF well pads drilled after

2017 that are suspected to be related to earthquakes near the Molin fault (Yang HF et al., 2020). The magenta cross marks the location of a

Wastewater Disposal (WD) well with an injection depth of 4 km. The stars mark  earthquakes (black, before our study period; yellow, after

our study period). (Inset) Location map of the Sichuan Basin; the red square indicates the study region. (b) Numbers of wells completely annually

and cumulative well count (black curve). (c) Magnitude-time plot of the CENC catalog in the study region, and cumulative count of earthquakes.

Earthquakes occurring in our study period in red.
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sufficient number of phase picks and a reasonably accurate velo-
city model.  Simultaneous  solutions  of  both  velocity  and  hypo-
central  parameters  are  required  to  achieve  precise  earthquake
locations (e.g., VELEST; Kissling et al., 1994). Recent applications of
REAL in several regions have demonstrated its ability to character-
ize earthquake sequences rapidly from raw seismic data,  in  com-
bination  with  a  machine-learning  phase  picker  (e.g.,  PhaseNet),
and  a  sequential  workflow  (Liu  M  et  al.,  2020; Park  et  al.,  2020;
Wang RJ et al., 2020; Tan YJ et al., 2021; Wong et al., 2021).

In this  study,  we investigate earthquakes that occurred in the re-
gion  surrounding  the  Weiyuan  Shale  Gas  Blocks  (SGB),  Sichuan,
China,  between  November  2015  and  November  2016,  using  a
temporary network of 50 stations (Figure 1). The deployment oc-
curred during a time when small-magnitude earthquakes were in-
creasing  in  number,  but  three  years  before  the  deadly Mw 4−5
class  earthquakes  that  occurred  in  2019  (Sheng  MH  et  al.,  2020;
Wang MM et al., 2020; Yang HF et al., 2020). Here we demonstrate
the feasibility  of  rapidly  generating  a  catalog  using  a  dense  net-
work and machine-learning algorithms.  To generate  the base for
building  a  high-resolution  earthquake  catalog,  we  follow  the
workflow of Liu M et al. (2020), starting with phase detection and
picking  by  applying  the  machine  learning  picker  PhaseNet  (Zhu
WQ  and  Beroza,  2019)  followed  by  event  association  with  REAL
(Zhang  M  et  al.,  2019)  and  hypocentral  location  using  VELEST
(Kissling  et  al.,  1994).  Our  REAL  catalog  contains  79,395  events,
constructed using 981,284 P and 859,576 S arrival  time readings.
Based on our VELEST-located earthquakes,  we are able further to
refine  and  reveal  the  seismicity  migration  patterns  surrounding
several HF wells. 

2.  Geologic Settings, Shale Gas Production and Seismic

Data
The  Weiyuan  SGB  is  located  in  the  Weiyuan–Rongxian  counties

and Zizhong City in the Sichuan Province. The geology is charac-
terized by the Weiyuan anticline, an NE–SW trending dome struc-
ture with many mapped faults trending in the NE direction on the
north flank and several  faults  trending in the SE direction on the
south  flank  (Figure  1)  (Liang  X  et  al.,  2019).  Between  1980  and
2015,  the  region  within  25-km  from  Weiyuan  County  was  struck
by only  12  earthquakes  with  magnitudes  greater  than 3,  accord-
ing to the China Earthquake Network Center (CENC) routine cata-
log (Figure 1); most of these 12 events were located to the south
of our study region, near Zigong City. The occurrence rate of smal-
ler  earthquakes  (M <  3)  was  as  low as  about  one earthquake per
week  before  April  2015  and  after  2009,  when  the  CENC  routine
catalog  became  available.  However,  frequent  earthquakes  (~12
earthquakes  per  day)  have  occurred  in  the  Weiyuan  SGB  since
May 2015, at pace with the development of HF wells in the region
(Figure  1). Shale  gas  resource  is  abundant  in  the  upper  Ordovi-
cian Wufeng Formation to lower Silurian Longmaxi  Shale Forma-
tion  (Lei  XL  et  al.,  2017; Wu  X  et  al.,  2019).  By  2015,  more  than
100 HF well pads were projected, and among them, 17 had been
drilled,  with  typical  completion  depths  of  around  4.8  km  below
ground  level  (~400  m)  in  the  Wei202  block  (near  station  s15  in
Figure  1)  and  5.8  km  below  ground  level  (~350  m)  for  Wei204
block (near station s22 in Figure 1) (Safety and Environmental Pro-
tection Technology Research Institute of  CNPC and Beijing CNPC
Construction  Project  Labor  Safety  and  Health  Pre  Evaluation  Co.,
Ltd,  2015; Dong DZ et  al.,  2018). Figure  1 shows HF wells  in  pro-
duction or being drilled by late 2015.

A temporary  seismic  network  of  50  stations  was  deployed in  the
area  from  November  2015  to  November  2016  (Figure  2a), cover-
ing the Weiyuan SGB (Figure 1). Each station was equipped with a
Guralp CMG-40T seismograph that was set with a sampling rate of
100 Hz. The average station spacing was 5 km. The network was in
normal service starting from late November 2015. However, in the
late stage of deployment of the network, some stations failed due
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to environmental factors (mostly rain and water), resulting in few-

er working stations after June 2016.

The  seismic  monitoring  system  in  the  Weiyuan  region  relied  on

the Sichuan network with more distant regional stations (Yang HF

et  al.,  2020).  Among them,  only  three stations  are  located within

30 km of Weiyuan County, which is in the center of our study re-

gion  (Figure  1a).  CENC  uses  these  and  more  distant  stations  for

constructing the routinely  reported catalog in the Sichuan Basin.

During  the  operation  period  of  the  temporary  seismic  network,

1,217  earthquakes  were  reported  with  a  magnitude  range  of

0.1−3.3  in  the  study  area  falling  within  Latitude  [29.35°,  29.85°]

and Longitude [104.5°, 105°] (Figure 1). 

3.  Construction of the Event Catalog
We applied  a  sequential  workflow  to  process  to  one  year’s  con-

tinuous seismic data to demonstrate how machine learning meth-

ods can expand the catalog in this region, even without a priori in-

formation from the standard catalog. 

3.1  Events Detection
We  use  a  30-s  time  window  to  divide  the  continuous  data  into

segments  for  input  to  PhaseNet.  Neighboring  segments  overlap

by 50% to enhance the completeness of picking by avoiding edge

effects. To  PhaseNet,  we  input  three-component  seismic  wave-

forms  of  each  segment;  PhaseNet  classifies  each  sample  point

with a probability  that  it  is  either  a  P wave,  S  wave,  or  noise;  the

three probabilities sum to unity. The noise is defined as the com-

plement to P and S waves in the data (Zhu WQ and Beroza, 2019).

Peaks in  the  P-wave  and  S-wave  probability  distributions  corres-

pond to the P and S arrival times (Figure 3). Conservatively, we set

a probability of  0.5 as the acceptance threshold for both P and S

picks (e.g., Figure 4). Smaller values might lead, especially in noisy
data,  to  a  larger  number  of  false  or  bad  picks  (e.g., Liu  M  et  al.,

2019; Wang RJ et al., 2020).

The detected phases consist of 4,860,125 P-wave arrival times and

3,567,610 S-wave arrival  times (Figure 2b). The number of  detec-
tions at each station correlates with the station’s uptime (Figures

2a−b).  Complete  P  and  S  picking  from  one  month’s  continuous

data from a single station, performed on a MacBook laptop com-

puter (3.1 GHz Dual-core Intel Core i5 processor), takes approxim-
ately 2 CPU hours. 

3.2  Events Association
Next,  we  use  the  Rapid  Earthquake  Association  and  Location

(REAL) package (Zhang M et al.,  2019) to create events out of the
raw-pick  data  stream.  REAL  scans  the  input  picks  in  time  order,

searching for associations of both P- and S-phases to form events

on a 3D grid.  Here we use a  grid spacing of  2  km.  The algorithm

projects arrival times from each station onto the grid and searches
for the grid point with the largest number of coincident arrivals. If

several grid point have the same (maximum) number of picks, we

select  the  one  with  the  smallest  root-mean-square  misfit  (Zhang

M et al.,  2019). The optimal stacking point of arrival times corres-

ponds to the initial hypocenter. Associated arrivals are declared in
an event and thus removed, and the process steps forward in time

with the oldest remaining arrival time.

In the original  implementation,  REAL associated arrival  picks to a

particular earthquake by counting the number of picks within the
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theoretical travel-time windows.  Occasionally,  when events over-
lapped in space and time,  a  pick could be associated to multiple
events,  which is  obviously  problematic.  To  make the result  more
robust  against  a  large  event  splitting  into  multiple  small  events
with small residuals, we use a modified REAL that assigns individu-
al picks to the event with the greatest number of picks (Tan YJ et
al., 2021). Consequently, this version of REAL keeps only the most
reliable event within a time window (e.g., 1 s around P waves and
1.6 s  around S waves),  thus potentially missing events that occur
closely in space and time.

We precalculated the theoretical  P and S travel-time tables using
the  TauP  Toolkit  (Crotwell  et  al.,  1999)  and  a  1-D  velocity  model
(Lei XL et al., 2017). The search intervals for the event location are
0.02°  over  a  0.2°  by  0.2°  (in  latitude  and  longitude)  horizontal
range and 2 km for a depth range above 20 km, respectively. The
grid is  centered at  the station that recorded the earliest  P phase.
We set the association threshold to 5 P picks and a total of 10 P or
S  picks.  So  at  least  five  stations  are  needed  to  declare  an  event.
Events occurring close to the boundary of the study area or with a
station azimuthal  gap  larger  than  250°  are  deleted  in  the  associ-
ation procedure.  We also remove S picks that occur less  than 0.5
seconds after P, as described by Zhang M et al. (2019).

To evaluate the rate of false positives, we visually checked the as-
sociated 703 P and 710 S phase picks on station s22 for one day’s
data  (data  from  2016-03-07; Figure  4),  finding  that  PhaseNet
picked phase  arrivals  times  that  show  subsample-level  agree-
ment  with  manual  picks,  with  average  differences  of  0.002  and
0.007 s  for  P  and S  phases,  respectively  (Figure  5a−b).  Moreover,
most of the associated phases show picking probabilities over 0.7
(Figure 5c), which validates  setting a  probability  of  0.5  as  the ac-
ceptance threshold for both P and S picks, as our approach to dis-

carding bad picks on noisy data.

The REAL catalog contains 79,395 events from 12 November 2015
through 18 November 2016 (Figure 6). 25% of the PhaseNet picks
are  successfully  associated,  consisting  of  981,284  P-wave  arrival
times  and  859,576  S-wave  arrival  times  (Figures  2c and 5d).  The
computation  time  depends  on  the  number  of  picks  recorded  by
our network. For one day of data,  it  takes about 10 minutes on a
MacBook laptop  computer  (3.1  GHz  Dual-core  Intel  Core  i5  pro-
cessor) to finish associating ten thousand picks. 

3.3  Local Magnitude Estimation
For each  event,  we  measure  the  maximum  amplitudes  of  hori-
zontal  components  after  deconvolving  the  instrument  response
from the raw waveforms and then convolving with the theoretic-
al  Wood-Anderson seismometer  response (Zhang M et  al.,  2019).
The  measured  waveform  window  starts  0.5  sec  before  P  arrivals
and is twice the S-P interval in length (e.g., Figure 7a). If an arrival
time  is  missing,  either  P  or  S,  we  use  the  predicted  travel  times.
We compute source-to-station distances using the locations from
REAL, and the attenuation table of Richter (1958) to determine the
local magnitude (ML). Then we average the measurements at indi-
vidual stations to estimate the magnitude of each event.

The  estimated  magnitudes  range  from ML −0.5  to  3.5.  Just  two
earthquakes were larger than ML 3: an ML 3.3 earthquake on 2016-
01-07,  and  an ML 3.5  on  2016-07-26.  Moreover,  we  compare  the
event waveforms for the ML > 2.8 earthquakes, which were all re-
ported by CENC but with generally lower magnitudes. The wave-
forms and peak amplitudes of ML >  2.8  earthquakes,  with similar
epicentral  distances between 14 and 16 km recorded on stations
s22, suggest  that  their  magnitudes  are  reliably  estimated.  Loca-
tion  uncertainties  are  significantly  reduced;  the  RMS  (root  mean
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Figure 5.   Statistics of accociated PhaseNet picks. (a) and (b) compare the hand picks to the PhaseNet picks of P and S, as demonstrated in Figure

4. (c) presents probabilities of picks from PhaseNet shown in (a) and (b). (d) shows probabilities of picks from PhaseNet shown in Figure 2c.
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square)  residuals  fall  to  below 0.3  s,  which is  an  improvement  of
almost one order of magnitude (Figure 7).

In addition  to  ordinary  earthquakes,  we  detected  7,979  explo-
sions  (ML <  0.5)  in  this  part  of  our  study  region  (below  latitude
24.49°)  that  occurred  exclusively  between  2015-12-22  and  2016-
01-20  (Figures  8a).  They  are  primarily  nighttime  (local  time  8:00
pm to 8:00 am) occurrences (Figure 8c), and are confirmed by re-
ports from a 3D seismic survey conducted in the southern part of
our  study  region  starting  on  December  21,  2015  (INFOPETRO,
2016).

After  removing  explosion  events,  we  retain  71,416  events  in  the
magnitude range of −0.5 to 3.5. Multiple event-rate peaks can be
observed  in  2016-01,  2016-03,  2016-04,  and  2016-05.  The  events
in the REAL catalog show temporal clustering behavior for the en-

tire period except for September 2016 (Figure 9a). Overall,  by us-

ing the temporary array we are able to locate about 60 times more

events  than  are  in  the  CENC  catalog  (Figure  9b).  Note  that  the

seismicity  rate  trends  of  the  two  catalogs  generally  agree  well

with each other  except  after  October  2016,  when the CENC seis-

micity  rate  climbs  to  its  peak  while  our  REAL  catalog  seismicity

rate flattens. The numbers of our located events show a three-fold

increase  than  CENC  catalog  after  October  2016,  but  the  removal

of 41 of the 50 stations of our temporary network (Figure 2a) res-

ults in decreased event locatability; thus the REAL catalog seismi-

city rate drops abnormally at the very end of our observation peri-

od (Figure 9b).

Maps of the REAL catalog epicenters, with estimated magnitudes

unevenly  distributed  in  both  time  and  space,  can  be  seen  in
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Figure 6.   Distribution of the REAL catalog events. (a) The background colors indicate density of events (numbers in 0.01 × 0.01 degree area);

black dots indicate event locations. (b) Latitude-depth view. (c) Longitude-depth view. (d) A zoomed map view for Wei204 block in (a); black

hexagons mark the locations of HF well pads; black lines connecting them show the traces of horizontal well branches. However, regulatory data

are lacking.
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Figures  9 and 10.  The  smaller  events  are  scattered  across  our
study  region  (Figures  10a−b). Note  that  most  of  the  larger  mag-
nitude earthquakes are located close to HF wells (Figures 10c−d).
Moreover, earthquakes with ML over 2.5 are concentrated near the
wells  in  the  Wei202  block  (the  west  region  in Figure  6d). In  con-
trast,  the  Wei204  block  features  very  dense  concentrations  of
smaller events (east region in Figures 6d and 10a−b). 

3.4  1-D Velocity Model Refinement
Here  we  present  a  modified  1-D  velocity  model  of  the  shallow

structure by using VELEST (Kissling et  al.,  1994)  and our picked P

and S arrivals. In VELEST, the non-linear ‘coupled hypocenter-velo-

city model  problem’  is  linearized  and  iteratively  solved  by  inver-

sion of the damped least-square matrix of traveltime partial deriv-

atives (Kissling et al., 1994). We solve for the S- and the P-wave ve-

locity  models  independently  by  using VELEST since many P-  and

S-wave arrival times of high quality were picked by PhaseNet (Zhu

WQ and Beroza, 2019).

A starting model was derived from combinations of several docu-

mented  velocity  models  with  different  layered  interfaces  that

were potentially applicable to our study. Zhao Z et al. (1997) used

body wave travel times to develop a 1-D P/S model to approxim-

ate the average crustal structure in the Longmenshan Fault Zone.

Lei  XL  et  al.  (2017) adopted  a  fine-layered  1-D  velocity  model  to

earthquake  relocations  near  Changning,  ~70  km  south  of  our

study region, based on seismic ambient noise tomography results

from Wang X et al., (2013). Particularly for the shallow structures in

the  Weiyuan  region, Meng  XB  et  al.  (2018) derived  a  1-D  P-velo-

city  model  from  borehole  well  logging  data,  and Zeng  Q  et  al.
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Figure 7.   Comparions of earthquakes with magnitude over ML 2.8. (a) Event waveforms on stations with similar distances between 14 and

16 km. (b) RMS travel time residuals of all phase picks for each earthquakes shown in (a).

104.5°E                104.6°E               104.7°E              104.8°E              104.9°E

29.4°N

29.5°N

(b)

0            7          14          21         28

29.4°N

29.5°N

(a)

-0.4

-0.2

0.0

0.2

0.4

M
a

g
n

it
u

d
e

0                     7                   14                   21                  28

Relocated
Lost

(c)Days after 2015-12-22

Days after 2015-12-22
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(2020) inverted  the  S  velocities  from  ambient  noise  tomography

results. In running VELEST, we modified the model by Zhao Z et al.

(1997) by  adding several  shallow layers  above 2  km to the initial

model (Figure 8); previous studies had suggested the possibility of

significantly lower shallow velocities.

To  utilize  VELEST  in  updating  the  velocity  model,  we  selected

1,600 events  with  400  explosions  in  the  south  and  1200  earth-

quakes  that  are  well-distributed  over  the  Wei202  block,  the

Wei204 block, and the northern region near Zizhong County. The

selected  events  are  the  best-recorded  ones  in  each  subregion,

each  with  at  least  20  associated  picks  whose  phase  probabilities

were greater than 0.7. Starting with the 1D velocity models modi-

fied from Lei XL et al. (2017) and Zeng Q et al. (2020), we estimate

optimal 1D  P-  and  S-velocity  models  by  averaging  over  the  out-

puts  of  20  experiments  on  the  selected  sub-datasets  to  account

for  lateral  heterogeneities  and  the  trade-off  between  epicentral

locations and station effects. Damping factors for the hypocentral

parameters and velocity parameters were selected by optimizing

the  data  misfit  reduction  and  the  parameter  resolution.  Here  we

heavily damped the station terms. Low-velocity layers have been

avoided so  as  not  to  introduce  instabilities  in  the  inversion  pro-

cess. Convergence  to  a  stable  solution  is  obtained  after  30  itera-

tions.

Despite different initial models, the resulting optimal 1D P- and S-

velocity  models  turn  out  to  be  very  similar  both  for  the  layered

depths and the velocities,  showing minor dependences on initial

velocities and numbers of  layered interfaces.  These confirm both

the precision and accuracy of our locations and demonstrate that

the final model we derive is robust.

The best-estimated model, outperforming the other ones in relo-

cating  explosions  back  to  the  shallow  surface  (Figure  9a),  is

defined as the one initiated from Lei XL et al. (2017). The optimal

model, with much slower velocities in the shallow part  and vary-

ing Vp/Vs ratios  for  different  layered  depths  (solid  red  curves  in

Figure  11a),  is  adopted  in  the  absolute  relocations  of  the  REAL

catalog events in the following part. 

3.5  Absolute Relocation
Subsequently,  we  relocate  all  of  the  79,395  REAL  catalog  events

(Figure 12a) by using VELEST and the updated 1-D velocity model

(Figure 11).  The well-constrained events are retained with < 200°

station gap and < 0.6-s travel time residual, resulting in 74,921 re-

located events (Figures 12b), showing a success rate of 94%. More

specifically, 5,692 out of 7,979 (71%) explosions and 69,229 out of

71,416  (97%)  non-explosion  events  are  relocated  by  VELEST.  The

explosions  and  other  events  that  are  lost  were  mostly  ones  that

occurred near the margins of our seismic network (Figures 8 and

12).

The  VELEST  locations  show  increased  spatial  clustering  (Figure

12b).  It  is  noteworthy  that  the  depths  of  the  explosions  in  the

south  are  relocated  to  be  very  shallow,  with  a  concentration

above 1 km (Figure 13b).  The mean RMS travel time residuals for

those  explosions  drop  from  0.207  s  to  0.121  s  (Figure  13c).  As  a

result, the sweeping behaviors of explosions are much more obvi-

ous in VELEST locations (Figure 8b). After removing the relocated

explosions, the VELEST catalog’s depths peak at around 3 to 4 km,

with  a  much  better  depth  resolution  than  the  REAL  locations

(Figures  12 and 13a−b). Moreover,  the  mean  RMS  travel  time  re-

siduals drop from 0.194 s to 0.145 s (Figure 13d). 
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Figure 9.   Number of events in different catalogs with time. (a) Magnitude-time plot of the CENC routine catalog (blue) and REAL catalog (red).

(b) Cumulative count of events in the CENC and REAL catalogs.
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4.  Catalog Characterization
Among the  obtained  79,395  detections,  we  identify  7,979  explo-

sions and locate  71,416 non-explosion events;  the  smallest  mag-

nitude  is  −0.5  (Figures  9 and 12).  With  an  updated  1-D  velocity

model, we are able to relocate 69,229 out of 71,416 events, which

are  not  evenly  distributed  but  concentrate  in  a  few  clusters

(Figures 4a and 10). The densest clusters appear in the east of the

study  region,  close  to  the  wells  of  the  Wei204  block,  with  the

second densest cluster near the Wei202 block to its west. 

4.1  Explosions
We  relocated  5,692  out  of  7,979  detected  explosions  (ML <  0.5)

that  occurred  exclusively  between  2015-12-22  and  2016-01-20

(Figure 8a). The explosions serve as a benchmark for the perform-

ances of our earthquake timing, association, and locations (Figure

8).  They  occur  with  a  semi-diurnal  pattern  of  occurrence,  almost

exclusively  at  night  (Figure  8c).  Their  magnitudes  range  from ML

−0.4 to 0.5, and most have focal depths at 0 km. During the time

of  the  3D  survey,  we  located  an  average  of  266  events/day;  the

peak was 461,  recorded on 2016-01-15 (Figure 8c).  The temporal

progression  of  these  small  events  sweeps  systematically  from

west to east (Figures 8a−b), showing typical migration character-

istics of an active source seismic survey. Conveniently,  the explo-

sions facilitate the validation of our velocity model (Figure 11). Ex-

plosions near the southwestern and southeastern margins of our

network (Figures 8a−b), largely occurring at the end of December

2015  and  the  end  of  January  2016  (Figures  8c),  were  discarded

due to our application of a more strict threshold of the azimuthal
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gap in retaining the data for VELEST relocations. 

4.2  Magnitudes of Earthquakes in Our Catalog
We  double-checked  all ML 2.5  earthquakes  in  our  REAL  catalog,

and found that they were all reported by CENC but with generally

lower magnitudes, which could explain the greater number of M 3

class earthquakes in the REAL catalog compared to the CENC cata-

log  (Figure  14).  The ML >  2.8  earthquakes  are  carefully  validated

with their event waveform inspections (Figure 7).

We  compare  our  REAL  catalog  with  those  reported  in  the  CENC

catalog specified in our study region. Event pairs with their origin

time differences smaller than 3 seconds are considered to be the

same  events.  Using  that  criterion,  we  have  successfully  detected
1129 out of 1217 CENC earthquakes and are able to relocate 1,067

of  them  (Figure  14a).  For  the  same  earthquakes,  magnitudes  in
our REAL catalog are systematically larger than those in the CENC
catalog by an average of  0.5  units  (Figures  14b−c). Such a  differ-

ence in magnitudes is likely due to different definitions, including
our  use  of  Richter’s  original  attenuation  table.  The  mean  RMS

travel  time residuals  drop from 0.895 s  to 0.199 s  and 0.146 s  for
CENC, REAL, and VELEST relocations, respectively (Figure 15a). The
offset  between  event  pairs  varies  between  kilometers  to  tens  of

kilometers (Figures 15b−c).  We also note that some epicenters in
the north from the CENC catalog appear in the south in our REAL
catalog  and  became  more  tightly  clustered  (Figures  14a and
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Figure 11.   Output models using different initial models. Initial model 1 is modified from Lei XL et al. (2017). Initial model 2 is from Zeng Q et al.

(2020). The solid red one is applied in the VELEST locations in this study. (a) Input and output velocity models. (b) Zoomed view of depths above
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Figure 12.   Comparisons of two different catalogs in terms of geographic locations. (a)−(b) show REAL and VELEST catalogs, respectively. The

colored circle shows event locations scaled with depth.
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15b−c), which may also contribute to the reported magnitude dif-

ference.

Overall, 88 out of 1,217 (7%) of the CENC earthquakes were lost in

our  REAL  catalog  (Figures  14a−b) due  to  too  large  station  azi-

muthal  gaps  or  insufficient  numbers  of  picks.  More  specifically,

out of the 88 missing CENC earthquakes, 16 occurred before 2015-

12 when  the  temporary  network  was  yet  to  be  fully  commis-
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Figure 13.   Comparisons of two different catalogs in terms of depth distributions and location uncertainties. (a)−(b) show depths of explosions

and non-explosions, respectively. (c)−(d) show RMS travel time residuals of explosions and non-explosions, respectively.
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Figure 14.   Comparison between event pairs in the REAL and the CENC catalogs. (a) Geographic distributions of seismic networks and event

locations. The green triangles indicate locations of the sparsely distributed local network in Sichuan. The yellow dots show events that were

reported by CENC but were missed by our association. The cyan dots are REAL associated locations (CENC events) but lost by VELEST relocation
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sioned, and 66  occurred after  2016-08,  when the  temporary  net-

work  was  partly  decommissioned  (Figure  2a).  The  remaining  six

occurred exclusively  after  2016-08 during which most  temporary

stations  were  removed  (Figure  2a). Therefore,  our  detection  suc-

cess  rate  can  be  as  high  as  99.5%  if  we  focus  only  on  events

between 2015-12 and 2016-07 when the temporary network func-

tioned well.  With a more strict threshold in retaining the data for

VELEST relocations,  another  62  earthquakes  are  lost,  their  loca-

tions  distributed  near  the  eastern  and  western  margins  of  our

seismic network (Figure 14a).

We  used  ZMAP  to  estimate  the  magnitude  of  completeness  (Mc)

for  the  REAL  and  CENC  catalogs  using  the  maximum  curvature

technique  for  the  cumulative  frequency–magnitude  (Figure  16)

(Wiemer  and  Wyss,  2000; Wiemer,  2001; Mignan  and  Woessner,

2012; Mignan  et  al.,  2018).  After  removing  explosions,  we  retain

71,416 REAL events in the magnitude range −0.5 to 3.5,  showing

uneven  distributions  of  events  between  day  and  night  (Figures

17a−b). The Mc value is estimated to be 0, and the b-value is 1.09.

In comparison, the Mc value in the CENC catalog is 0.8, and the b-

value  is  1.04  (Figure  12a).  Although  our  magnitudes  are  larger
than  those  in  the  CENC  catalog  (Figure  14c),  we  have  a  much
smaller Mc value (Figure 12b).  Such improvement is  attributed to
our  unique  privilege  of  using  a  temporary  network,  which  was
able to detect and locate many more earthquakes than are in the
CENC catalog (Figures 12).

To  estimate  the  temporal  pattern  of Mc, we  used  a  moving  win-
dow  approach  and  selected  the  sample  window  as  500  events
overlapping with 125 events.  The magnitude bin is  0.1.  We com-
pute Mc and  the b-value in  each  window  and  assign  the  corres-
ponding time as the middle of the window (Figure 17c−d). The Mc

value  remained  relatively  stable  around  0  until  June  of  2016
(Figure 17c),  by which time many stations in the north had been
removed  (see Figure  2).  After  then  the Mc value  increased  to  be
around  0.6  (Figure  17c).  The b-value  ranged  from  ~1.0  during
quiet times to >1.5 during active times (Figures 17d). 

4.3  Spatiotemporal Patterns of the Catalog
The  REAL  and  VELEST  catalogs  exhibit  improved  spatiotemporal
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resolution compared with the CENC catalog due chiefly to the in-

creased  number  of  events  and  better  locations  (Figures  14 and

15).  Most  events  in  our  catalog,  however,  do  not  locate  on

mapped faults except for a few in the northeast part of the study

region (Figures 12).

To better understand the characteristics of the REAL seismicity, we

split  the  events  into  different  magnitude  ranges  (Figure  10).  The

67,774  events  with  magnitudes  below ML 0.5 are  widely  distrib-

uted over the study region (Figure 10a).  As the magnitude range

increases,  the  events  become  more  localized  in  space.  There  are

10,996 events  with magnitudes  between ML 0.5  and 1.5,  most  of

which  occurred  after  February  2016,  concentrating  near  the  HF

wells and in the north part of our study region (Figure 10b). Clus-

tering  in  the  vicinity  of  the  HF  wells  becomes  more  pronounced

for  events  with  magnitudes  over ML 1.5  (Figures  10c−d).  Except

for  sporadic  events  near  mapped  faults  and  in  the  south  part  of

the study region, most of the larger earthquakes are located with-

in ~5 km of the nearest HF wells (Figure 10). One exception is the

cluster in the northeast near Zizhong City (Figures 10 and 12).

We  detected  and  located  about  twice  as  many  events  at  night

time  compared  to  daytime  (Figures  17a−b).  It  is  likely  a  result  of

variations of cultural  noise levels and wind-generated noise (e.g.,

Wang RJ et al., 2020; Tan YJ et al., 2021). The difference can also be

seen from the estimated Mc and b-values for the separate analysis

of  the  two  groups  of  diurnal  seismicity  (Figures  16b and 17c−d).

The earthquakes at nighttime show an estimated Mc of −0.1, smal-

ler than the value of 0.1 at daytime (Figure 16b). And, the b-values

for earthquakes at daytime and night time are estimated to be 1.1

and  1.2  (Figure  16b), respectively.  However,  the  temporal  vari-

ations  of Mc and b-values  show more obvious  differences  during
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both the relatively quiet and active periods (Figures 17c−d). Over-

all, the Mc and b-values of earthquakes in the daytime show more

significant temporal variations.

The  spatiotemporal  clustering  patterns  are  obvious  for  events

with  a  magnitude  below ML 1.5  but  less  so  for  larger  magnitude

events (Figures 12). Overall, the larger magnitude events near the

HF  wells  show  relatively  much  weaker  temporal  clustering  than

do smaller events (Figure 18a−b). The VELEST catalog shows mul-

tiple  distinct  clusters  by  considering  their  occurrence  times  and

distance to nearby HF wells (Figures 12b and 18a−b). With a depth

concentration  between  2  and  4  km,  they  are  located  well  within

the seismic network (Figure 12b); thus, their hypocenters are bet-

ter constrained and discussed in detail.

The seismicity in Wei202 block consists of 4,749 total events. Most

seismicity  in  Wei202 block is  densely  located atop the horizontal

branches  of  the  six  HF  wells  (Figure  18a).  The  seismicity  in  the

northeastern  part  of  the  Wei202  block  (Figure  18a),  with  the

largest magnitude of ML 3.3, shows close proximity to the upward

wells of Wei202H3, suggesting a causal link. The magnitude-time

plots show that the seismicity rate is initially high in 2015-11, the

beginning  of  the  Weiyuan  earthquake  sequence  (Figure  18c).

Later on, the seismicity continues to increase, and we see a gently

decreased  level  of  seismic  activity  until  2016-04.  The  seismicity

rate  remains  at  low  levels  (~1  event  per  day)  between  2016-05

and 2016-07. After 2016-08, clusters of seismicity emerge near the

well toe of Wei202H6 and the well head of Wei202H4.

The  seismicity  in  the  Wei204  block  has  the  largest  population  of
events, a total of 60,276. The magnitude–time plot shows several
stages  of  abrupt  seismicity  rate  increase  in  early  2016-01,  late
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2016-02,  and  early  2016-10,  with  rapid  decay  of  seismicity  near
the onset regions (Figure 18b).  We found events densely located
near  the  Wei204  block  between  2016-03  and  2016-05  (Figure
18b). The b-values are larger than 1, and Mc is below 0 during this
time interval (Figures 17c−d). Given the strong spatial correlation
between populated seismicity and wells, it is highly likely that the
groups  of  seismicity  between 2016-03  and 2016-05  are  linked to
HF activities of different horizontal well branches from Wei204H6
(Figures  18b and 18d).  The  largest  earthquake  in  our  observed
Weiyuan sequence is located near the well toes of the upward ho-
rizontal wells from Wei204H6. Additionally, we are able to identify
three  distinctly  grouped  events  extending  around  upward  wells
of Wei204H4,  Wei204H9  and  Wei204H11.  Each  group  of  seismi-
city  lasted  only  for  several  weeks  and  occurred  separately  in  the
very  beginning  and  end  of  our  study  period  (Figures  18b and
18d). The  location,  orientation,  and  timing  of  the  seismicity  sug-
gest that the two groups of events were probably induced by HF
simulation of wells Wei204H4 Wei204H9 and Wei204H11, respect-
ively. 

5.  Discussion and Conclusions
We have built a comprehensive earthquake catalog from raw con-
tinuous seismic data using a machine-learning phase picker (Zhu
WQ and Beroza, 2019) and a sequential workflow of phase associ-
ation  and  location  algorithms  (Zhang  M  et  al.,  2019; Liu  M  et  al.,
2020). In this study, we are able to report that the processing of 1-
year  datasets  from  50  stations  can  be  done  in  about  750  CPU
hours.  Moreover,  parallel  processing  and  GPU-based  execution
will be even faster, costing only minutes (Liu M et al., 2020).

Machine learning and seismology benefit  from each other  (Kong
QK  et  al.,  2019).  An  important  ingredient  for  improving  machine
learning is the assembly of large labeled data sets. In seismology,
we have such large labeled seismic data sets, e.g., waveforms with
manually  or  automatically  picked  and  manually  reviewed  arrival
times (Mousavi et al.,  2019a).  Seismology is one of the best fields
for  developing  and  testing  machine  learning  algorithms,  which
will  eventually  drive  the  development  of  machine  learning.
PhaseNet  demonstrates  high  precision,  particularly  for  S  waves
(Zhu WQ and Beroza, 2019). The database of accurate P and S ar-
rival times allows us to improve both P- and S-wave velocity mod-
els  and  is  especially  useful  for  further  polarization-based  and  S-
wave-based seismic analysis (Zhu WQ and Beroza, 2019).

In the phase picking step, the sensitive detection performance of
PhaseNet  can  facilitate  REAL  in  successful  association  and  initial
location  of  weak  events.  PhaseNet  also  detects  explosions  with
clear P or S arrivals. The local velocity model we used (Lei XL et al.,
2017)  was  initially  developed for  the  Changning region,  which is
within ~100 km from our study region. Consequently, the velocit-
ies  of  the  deeper  depths  are  likely  suitable  for  our  study  region,
but  the  shallow  velocities  might  not  be  very  accurate,  as  can  be
seen from our velocity model validations (Figure 11). Using such a
reasonably good velocity model,  the depths of more than half  of
the  7,979  explosions  are  recovered to  be  0  km (Figure  13a). Sus-
pected shots  are  typically  treated as  a  nuisance during construc-
tion of seismic catalogs; however, as we have shown, they can be
quite  valuable  for  the  validation  of  location  accuracy  since  they

provide  us  the  information  of  their  depths  from  the  surface  and
benefit our velocity model calibrations (Figures 11 and 13). In this
study,  we  knew  of  their  existence  (Figure  8)  (INFOPETRO,  2016)
and could remove them during post-processing. Therefore, explo-
sions were of minimal concern to the accuracy of sequential work-
flow during the phase association and relocation procedures (e.g.,
Park et al., 2020). Some events that occur closely in space and time
might  be  missing  in  this  type  of  analysis,  since  REAL  keeps  only
the most reliable one within a time window (Zhang M et al., 2019).

Compared  to  continuous-waveform-based  earthquake  detection
methods  (e.g., Zhang  M  and  Wen  LX,  2015; Kao  H  and  Shan  SJ,
2007),  REAL  reduces  the  computational  load  by  using  discrete
time  phase  picks.  REAL  possesses  the  main  advantages  of  both
pick-based and waveform-based detection and location methods
(Zhang M et al., 2019), enabling it to work successfully with sparse
station coverage.  We  detected  relatively  fewer  events  after  Au-
gust 2016 near the Wei204 block, a bias that is likely to have been
due  to  the  removal  of  stations.  Only  10  stations  were  in  service
after that time in this area (Figure 2). Station coverage in the east
also became poor due to the removal of stations. Even so, we de-
tected and located some event clusters in the north of the Wei204
block (Figure 12).

The phase  data  and  initial  hypocenters  produced  by  this  work-
flow  serve  as  the  initial  step  toward  the  construction  of  a  high-
quality and  robust  earthquake  catalog,  to  be  followed  by  preci-
sion  relocation  using  a  range  of  modern  tools,  e.g.,  hypoDD
(Waldhauser and Ellsworth, 2002). Although the number of detec-
tions  greatly  increased  over  routine  analysis,  we  likely  missed
events  for  a  variety  of  reasons,  including  insufficient  number  of
picks, events spaced too closely in space and time, or events with
large station gaps and/or travel  time residuals.  Small  numbers of
picks (especially  S picks)  or  large timing errors can result  in large
location errors  since  the  depth-origin  trade-off  most  strongly  af-
fects locations based on P waves (Zhu WQ and Beroza, 2019).

We  suggest  that  much  of  the  microseismicity  in  the  earthquake
sequence may be a result of HF stimulation in Wei202 and Wei204
blocks. The  combination  of  sensitive  detection  and  precise  loca-
tion of microseismicity,  and a preliminary database of HF well  in-
formation, has  allowed  us  to  distinguish  groups  of  events  in-
duced by HF. The multiple well influences on seismicity pose sig-
nificant challenges for  seismic hazard mitigation,  where different
actions would be required for different wells.

In the CENC catalog, it is difficult to associate earthquakes with HF
wells due to the small number of earthquakes and uncertain loca-
tions (Figures 14a). For the same earthquakes in the two catalogs,
significant  location improvements  were obtained (Figures  14a−b
and 15a). Our results improve the spatial resolution of the ~1,200
earthquakes  reported  in  the  CENC  catalog  (Figure  14a),  showing
potential to better separate the seismicity near HF wells from nat-
ural tectonic events (Figure 12b). Although we found many small
earthquakes clustered near HF wells (Figures 18a−b), it is still chal-
lenging to  understand  the  connection,  if  any,  with  shale  gas  de-
velopment  and  production  without  a  higher  precision  catalog.
The presence  of  multiple  closely-spaced  HF  wells  poses  signific-
ant challenges  for  seismic  hazard  mitigation  since  different  ac-
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tions  might  be  required  depending  on  the  causal  connection
(Figures  18a−b).  Thus,  we  are  motivated  to  refine  further  the
VELEST  catalog  by  using  relative  relocation  methods  to  unfold
their detailed spatiotemporal patterns in our companion paper.

In  sum,  we  have  constructed  a  basic  earthquake  catalog  for  the
Weiyuan  earthquake  sequence  from  12  November  2015  to  18
November  2016  from  raw  data  without  manual  review.  We  have
detected  and  located  about  60  times  as  many  events  as  the
routine CENC  catalog.  We  have  also  used  explosion  and  earth-
quake data to calibrate the local 1-D P and S velocity models. We
were  able  to  relocate  5,692  explosions  and  other  69,229  events.
Our study  demonstrates  the  feasibility  of  characterizing  earth-
quake  sequences,  potentially  induced  seismicity,  and  artificial
sources, using machine-learning detection and timing and a high-
performance sequential earthquake monitoring workflow. 
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