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Key Points:
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reanalysis datasets, GMTED2010 terrain data and COSMIC RO data.

●

This deep learning method can effectively estimate the zonal trend of GW Ep.●

The GW Ep estimated by the deep learning model shows obvious seasonal variation and quasi-biennial oscillation.●
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Abstract: One of the most important dynamic processes in the middle and upper atmosphere, gravity waves (GWs) play a key role in
determining global atmospheric circulation. Gravity wave potential energy (GW Ep) is an important parameter that characterizes GW
intensity, so it is critical to understand its global distribution. In this paper, a deep learning algorithm (DeepLab V3+) is used to estimate
the stratospheric GW Ep. The deep learning model inputs are ERA5 reanalysis datasets and GMTED2010 terrain data. GW Ep averaged over
20−30 km from 60°S−60°N, calculated by COSMIC radio occultation (RO) data, is used as the measured value corresponding to the model
output. The results show that (1) this method can effectively estimate the zonal trend of GW Ep. However, the errors between the
estimated and measured value of Ep are larger in low-latitude regions than in mid-latitude regions, possibly due to the large number of
convolution operations used in the deep learning model. Additionally, the measured Ep has errors associated with interpolation to the
grid; this tends to be amplified in low-latitude regions because the GW Ep is larger and the RO data are relatively sparse, affecting the
training accuracy. (2) The estimated Ep shows seasonal variations, which are stronger in the winter hemisphere and weaker in the summer
hemisphere. (3) The effect of quasi-biennial oscillation (QBO) can be clearly observed in the monthly variation of estimated GW Ep, and its
QBO amplitude may be less than that of the measured Ep.
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1.  Introduction

Atmospheric gravity waves (GWs) are mesoscale disturbances that
exist in the global atmosphere and have a global propagation ef-
fect (Alexander, 1998). GWs play a key role in the coupling of the
lower  and  upper  atmosphere  (Fritts  and  Alexander,  2003)  and  in
the dynamics and circulation of the middle atmosphere (John and
Kumar, 2012). After GWs are excited in the troposphere, the driv-
ing  force  generated  by  the  upward  propagation,  saturation,  and
break-up process of GWs is an important source for the structure
of the middle atmosphere (Chen D et al.,  2012, 2013). It  is gener-
ally  accepted  that  GWs  excited  by  topography,  convection,  and
wind  shear  in  the  lower  atmosphere  transport  momentum  and
energy to the middle atmosphere (Alexander, 1996), and interact
with  the  background  atmosphere  and  other  atmospheric  waves.

With the decrease in atmospheric density, the amplitudes of GWs

increases when they propagate to the upper atmosphere after be-

ing excited in the troposphere, causing them to reach an instabil-

ity  saturation  condition.  Finally,  GWs  break  up  and  transfer  their

momentum  and  energy  to  the  background  atmosphere,  chang-

ing the atmospheric background state.

In the study of GWs, it  is  a research hotspot to obtain the poten-

tial  energy  (Ep),  wavelength,  propagation  direction,  momentum

flux, and other parameters of GWs from sounding data (Xu XH et

al.,  2015). The  data  used  to  study  GWs  mainly  come  from  radio-

sondes  (Yoshiki  and  Sato,  2000; Kramer  et  al.,  2016),  sounding

rockets  (Hamilton,  1991),  lidar  (Zhao  RC  et  al.,  2016), and  space-

borne sensors (Wang L and Alexander, 2010). Although this equip-

ment has provided valuable measurements for the study of atmo-

spheric GW activity, it is difficult to achieve a global distribution of

GWs. Compared with data from other observation methods, satel-

lite observation data have a wider spatial  range and can be used

to study the large-scale or global distribution of atmospheric GW

  
Correspondence to: Z. Sheng, 19994035@sina.com
Received 23 JUL 2021; Accepted 06 SEP 2021.
Accepted article online 04 NOV 2021.
©2022 by Earth and Planetary Physics. 

 
 

http://www.eppcgs.org/
http://dx.doi.org/10.26464/epp2022002


parameters. Alexander et al. (2008) performed a global analysis of

HIRDLS  (High  Resolution  Dynamics  Limb  Sounder)  temperature

profile  data  to  derive  properties  of  gravity  waves. Meyer  et  al.

(2018) compared temperature variances of AIRS (Atmospheric In-

fraRed Sounder)  and HIRDLS to evaluate the relationship of  their

stratospheric  gravity  wave  observations. Liu  X  et  al.  (2019) stud-

ied  the  seasonal  and  height  dependencies  of  the  orographic

primary and larger-scale  secondary gravity  waves using the tem-

perature  profiles  of  SABER  (Sounding  of  the  Atmosphere  using

Broadband Emission Radiometry).

Since the  end  of  the  20th  century,  the  method  of  measuring  at-

mospheric  parameters  by  Global  Navigation  Satellite  System

(GNSS)  radio  occultation  (RO)  technology  has  been  widely  used

and  many  achievements  have  been  made  (Chen  ZP  et  al.,  2018;

Cheng N et al., 2021). By measuring the bending angle and signal

delay of the radio signal transmitted by the satellite when the sig-

nal  passes  through the atmosphere,  the atmospheric  refractivity,

temperature,  pressure,  water  vapor  pressure,  and  ionospheric

electron  density  profiles  can  be  calculated  (Luo  J  et  al.,  2018).

GNSS RO has the advantages of high precision, high vertical resol-

ution, all-weather observation and global coverage (Bai WH et al.,

2020). This  has  become  an  important  approach  to  global  atmo-

spheric  measurement.  In  investigations  of  GWs  using  GNSS  RO

data, Xu XH et al. (2018) determined the spatial and temporal vari-

ability  of  global  stratospheric  GWs  and  the  characteristics  of  GW

activity during  sudden  stratospheric  warming  (SSW)  using  COS-

MIC RO data.

In recent years, deep learning has played an important role in in-

vestigations of  weather  and climate prediction (Rasp et  al.,  2018;

Scher, 2018; Moraux et al., 2019). However, there are still few stud-

ies using deep learning to estimate atmospheric GW parameters.

Only Matsuoka et al. (2020) used 29-year reanalysis datasets to es-

timate the flux of GWs near the Hidaka Mountains in Japan using

deep  learning.  Although  reanalysis  datasets  can  cover  the  world

horizontally and have high horizontal resolution, their vertical res-

olution is generally low and cannot be used solely by deep learn-

ing to obtain gravity wave potential energy (GW Ep). Matsuoka et

al. (2020) innovatively applied deep learning to estimate GW para-

meters, but due to the small region that was selected, it could not

reflect the spatial and temporal variability of global GW activity.

Taking  ERA5  global  reanalysis  datasets  and  terrain  data  as  input

and taking the global GW Ep calculated by COSMIC RO data as the

label, this study applies deep learning (DeepLab V3+) to estimate

the  GW Ep averaged  over  20−30  km  in  the  latitude  range  of

60°S−60°N  as  the  output  of  the  model.  Additionally,  this  study

verifies that GW Ep estimated by the trained model has significant

seasonal variation and quasi-biennial oscillation (QBO).

Generally, COSMIC RO data can be used to study GW activity only

after 2007, while the global distribution of GW Ep before 2007 can-

not  be  determined.  The  significance  of  this  study  is  to  estimate

the GW Ep in recent decades by using a large number of reanalys-

is  datasets  to  understand  the  long-term  distribution  of  GWs  in

middle and low latitudes. 

2.  Datasets 

2.1  Reanalysis Datasets
ERA5  is  the  fifth  generation  European  Centre  for  Medium-Range
Weather  Forecasts  (ECMWF)  reanalysis  for  global  climate  and
weather. The input data of the deep learning model in this study
are mainly  the  atmospheric  parameters  of  ERA5  at  certain  pres-
sure levels.

Since  the  excitation  conditions  of  GWs  mainly  include  terrain,
wind  shear,  and  deep  convection,  the  input  parameters  of  ERA5
selected in this study include temperature, u-component of wind
(zonal wind), v-component of wind (meridional wind), vertical ve-
locity,  and  relative  humidity  at  500,  700  and  850  hPa.  To  enable
the deep learning model to learn the QBO characteristics of GWs,
the input should include some atmospheric parameters with QBO
characteristics;  thus,  temperature  and  zonal  wind  at  50,  100  and
200 hPa are appended to the model input. 

2.2  Terrain Data
Terrain is  key to the excitation of  GWs,  so global  mean elevation
data are used as the input to the deep learning model. The Global
Multi-resolution Terrain Elevation Data 2010 (GMTED2010) used in
this  study  is  an  enhanced  global  elevation  model  developed  by
the U.S. Geological Survey (USGS) and the National Geospatial-In-
telligence Agency (NGA). 

2.3  COSMIC RO Data
The COSMIC mission is an Earth atmosphere detection system us-
ing low-orbit satellites to study weather forecasting, atmospheric
processes, climate monitoring, model verification, space weather,
ionospheric research,  etc.  The  high  accuracy  and  vertical  resolu-
tion (~20 m in the L2 data) of COSMIC RO data enable the calcula-
tion of the global GW Ep. This paper uses COSMIC RO data to cal-
culate  the  GW Ep averaged over  20−30  km  as  the  measured  val-
ues applied in the training process. 

3.  Method
For  the  sake  of  simplicity,  in  this  paper  the  GW Ep calculated  by
COSMIC RO data is called the measured value, and the GW Ep out-
put by the deep learning model is called the estimated value. 

3.1  Calculation of GW Ep with COSMIC RO
The  key  to  GW  calculation  is  to  extract  the  perturbation  of  the
temperature profile caused by GWs. This paper refers to the meth-
od developed by Wang L and Alexander (2009) to obtain the tem-
perature perturbation with COSMIC RO data,  similar  to that  used
in many related studies (Wang L and Alexander, 2010; Xu XH et al.,
2015, 2018; Zeng XY et al., 2017). The procedure is as follows:

(a) Interpolation. The cubic spline interpolation method is used to
interpolate the profile  data over 8−38 km in altitude to a regular
200 m resolution.

(b) Elimination  of  abnormal  profile  data.  There  are  still  some  ab-
normal temperature profiles in the COSMIC L2 data (Figure 1a). To
avoid  the  effects  of  these  abnormal  profiles  on  the  subsequent
calculation of GW Ep, it is necessary to eliminate them. The meth-
od in detail is as follows:
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•  Perform  box-plot  analysis  on  each  interpolated  profile  at  each

level to provide a reasonable temperature interval for each height

(Figure 1b). Temperature values that are not in the reasonable in-

terval at each altitude level are regarded as abnormal values.

• Count the number of abnormal values in each profile. If  this ex-

ceeds  a  certain  threshold,  this  temperature  profile  is  deemed  to

be an abnormal temperature profile that needs to be eliminated.

All  temperature  profiles  after  eliminating  abnormal  data  are

shown in Figure 1c.

(c)  Gridding  of  temperature  data.  A  global  grid  is  constructed  at

each  level,  and  the  resolution  of  the  region  is  15°  ×  10°  which  is

sparse enough to obtain the large-scale background temperature.

The mean of all temperature values in the grid is taken as the tem-

perature at the center point of the grid.

(d)  Calculate  large-scale  waves.  The  S  transform  (Stockwell  et  al.,

1996) is  performed  to  extract  the  large-scale  temperature  vari-

ation  at  each  latitude.  Temperature  variations  with  zonal

wavenumbers  between  0  and  6  can  be  regarded  as  large-scale

waves, which include planetary waves and Kelvin waves, while the

residual term (i.e., waves with zonal wavenumbers greater than 6)

is  considered  to  be  mainly  caused  by  GW  activity  (Jia  Y  et  al.,

2015).

(e) Obtain temperature perturbation. After interpolating the large-

scale temperature  variation  back  to  the  position  of  the  raw  pro-

files as background temperature profiles (Figure 2a), temperature

residuals  can  be  obtained  by  subtracting  background  profiles

from  the  interpolated  profiles  of  step  (b).  However,  the  residuals

still  include  some  noise  and  need  to  be  filtered  by  a  repeat  S

transform (Figure 2b).

After obtaining all temperature perturbation profiles, the GW Ep at

each level can be calculated by Equation (1):

Ep =
1
2
( g
N
)2(T ′

T
)2

, (1)

g T′

T

N N2

where  is  the  acceleration  by  gravity,  is the  disturbance  tem-

perature,  is the background temperature, and the Brunt-Väisälä

frequency  can be obtained from  in Equation (2):

N2 =
g

T
(∂T
∂z

+
g
cp
) , (2)

z cpwhere  is the altitude and  is the isobaric specific heat.

Finally, we construct a global grid with a resolution of 1° × 1° to in-

terpolate the scattered gravity wave Ep data into regular grid data,

to obtain the gridded global GW Ep (Figure 3).

Due to  the  sparse  distribution  of  COSMIC  RO  data  at  high  latit-

udes (Figure 4a), the gridded Ep may have null values in high-latit-

ude  regions.  Additionally,  with  the  gradual  reduction  in  the

quantity  of  COSMIC-1 daily  profiles  after  2011 (Luo J  et  al.,  2018)

and because the distribution of COSMIC-2 data after October 2019

is  only  between  60°S  and  60°N  (Figure  4b),  to  retain  as  much  of

the available data as possible, this study sets the target region as

60°S−60°N. 

3.2  Dataset Construction and Augmentation 

3.2.1  Dataset construction
It is  generally accepted that the main excitation conditions of at-

mospheric  GWs  include  topography,  deep  convection,  and  wind

shear (Fritts and Alexander, 2003). Among these excitation mech-

anisms, topography is the more common source of GWs (Zeng XY

et al., 2017), while in equatorial and low-latitude regions, GWs in-

duced by convection are more significant (Vincent and Alexander,

2000).  Because  topographic  GWs  are  mainly  generated  around

large terrain such as mountains, topographic data should be used

as an input parameter. The wind field can reflect the fluctuation of
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Figure 1.   COSMIC RO temperature profiles on January 1, 2011 (UTC). (a) All unprocessed temperature profiles (1305 profiles in total). (b) Box-plot

analysis of each level. (c) All temperature profiles after eliminating abnormal data (1094 profiles in total).
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the atmosphere and these characteristics  will  be propagated up-

ward after excitation of GWs occurs in the troposphere, therefore,

the  wind  field  should  be  included  as  an  input  parameter.  Since

strong  convection  is  usually  accompanied  by  high  temperature

and  humidity,  these  are  also  included  as  input  parameters.

However, the  use  of  only  terrain,  tropospheric  temperature,  hu-

midity and wind fields as  model  inputs is  not  sufficient  to reflect

the quasi-biennial variation characteristics of GW activity (this will

be illustrated in detail in the results and discussion section), there-

fore, it is necessary to add the stratospheric temperature field and

zonal wind with QBO characteristics as inputs. It is worth mention-

ing  that  some  studies  indicate  there  is  a  strong  correspondence

between  stratospheric  GW Ep and  zonal  wind  (Zeng  XY  et  al.,

2017; Xu XH et al.,  2018).  In Figure 5,  taking the zero-wind speed

line (white solid line) as the boundary, the potential energy of the

east  wind  area  in  the  middle  latitudes  surrounded  by  the  zero-

wind speed line is smaller, while the potential energy of the west

wind area is larger. Below the height of 20 km, the upload of grav-

ity wave activity is significantly affected by the zero-wind layer. In

Figure 6, the maximum Ep in low latitudes appears near the zero-

wind speed line. The blank area regions in Figures 5 and 6 repres-

ent that Ep in these regions is greater than the maximum (4 J/kg)
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Figure 2.   A COSMIC RO temperature profile obtained on January 1, 2011 (UTC). (a) Raw temperature profile and background temperature

profile. (b) Temperature perturbation profile.
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Figure 3.   Gridded GW Ep averaged over 20−30 km on January 1,

2011 (UTC).
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Figure 4.   Distribution of COSMIC RO events on (a) January 1, 2011

(UTC) and (b) January 1, 2020 (UTC).

Earth and Planetary Physics       doi: 10.26464/epp2022002 73

 

 
Wu Y and Sheng Z et al.: Application of deep learning to estimate gravity wave

 



32

26

20

14

A
lt

it
u

d
e

 (
k

m
)

2007-01
2007-07

2008-01
2008-07

2009-01
2009-07

2010-01
2010-07

2011-01
2011-07

2012-01
2012-07

2013-01
2013-07

2014-01
2014-07

Date

4

3

2

1

0

E
p
 (

J/
k

g
)

 
Figure 5.   The monthly average variation of GW Ep and zonal wind at each altitude in the latitude range of 30°N−40°N from 2007 to 2014, from

ERA5 data. The heat map is the GW Ep, the isoline is the zonal wind, the negative zonal wind values (black dotted lines) represent east wind, and

the positive values (red solid lines) represent west wind.
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Figure 6.   Same as Figure 5, but for 10°S−10°N.

Table 1.   Input dataset of the deep learning model.

Layer Parameter name Pressure levels (hPa) Resolution Latitude range

1 Terrain – 1° × 1° 60°S−60°N

2−4 Relative humidity 500, 700, 850 1° × 1° 60°S−60°N

5−7 Temperature 500, 700, 850 1° × 1° 60°S−60°N

8−10 Zonal wind 500, 700, 850 1° × 1° 60°S−60°N

11−13 Meridional wind 500, 700, 850 1° × 1° 60°S−60°N

14−16 Vertical velocity 500, 700, 850 1° × 1° 60°S−60°N

17−19 Temperature 50, 100, 200 1° × 1° 60°S−60°N

20−22 Zonal wind 50, 100, 200 1° × 1° 60°S−60°N
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of  the  colorbar.  The  wind  field  data  in Figure  5 and Figure  6 is

from ERA5.

The input data of the deep learning model have 22 layers, and the

latitude region of each layer is 60°S−60°N. A downsampling oper-

ation is performed to achieve a resolution of 1° × 1°, which is the

same as  the resolution of  the gridded GW Ep.  All  input  layers  are

shown in Table 1. The output of the model is the GW Ep grid data

within the area of 60°S−60°N.

A
max min

A [A − (min − ε1)] /[(max + ε2) − (min − ε1)] (min − ε1) (max + ε2)

To accelerate the convergence of the model, it is necessary to nor-

malize  the  data  of  each  layer.  For  the  input/output  layer ,  its

maximum and minimum values,  and , in the global range

over the  years  examined  can  be  determined,  and  the  normaliza-

tion  operation  for  can  be  expressed  as 

, where  and  represent

an  appropriate  expansion  of  the  value  range  to  ensure  that  the

normalization  operation  always  has  an  input/output  data  value

between 0 and 1 when new data are input in the model.

To verify the seasonal variation in the estimated Ep, datasets from

three years (June 2009 to May 2010, June 2010 to May 2011, and

June 2011 to  May 2012)  were used as  test  sets  to  evaluate  three

models  separately.  For  each  model,  5%  of  the  data  outside  the

test set were randomly selected as the validation set and the oth-

er data were used as the training set. The date range of the train-

ing set, validation set and test set for the three models are shown

in Table 2. The reason this study uses three models is to verify that

the seasonality of GW Ep is not the result typical of other years, be-

cause the intensity of GW Ep is different in these three years. 

3.2.2  Dataset augmentation
Since the calculation of the measured values of GW Ep requires all

the temperature profile data from each day, only one global distri-

bution of  GW Ep can be obtained per  day.  The timespan of  COS-

MIC RO data in this paper is from January 2007 to December 2020,
and the quantities of daily profiles on many days are not enough
to calculate the global distribution of GW Ep, so there are only ap-
proximately  3300  valid  days,  which  is  far  from  enough  for  deep
learning. Hence, it is necessary to augment the dataset.

This  study  develops  a  "cut-swap"  dataset  augmentation  method
for global meteorological data. Taking terrain data as an example,
the specific steps for dataset augmentation are as follows:

(a)  Select  an  integer  longitude  within  the  longitude  range  of
180°W−180°E and cut the dataset along that longitude (Figure 7a).
(b)  Swap the left  and right parts  of  the split  dataset and then re-
splice them together (Figure 7b).
(c)  Repeat  the  above  processes  14  times  to  expand  the  sample
size  to  approximately 50000,  which  is  15  times  the  original
amount.

The input layers (terrain and reanalysis data) and the output layer
(measured Ep) of the training set are processed simultaneously us-
ing the dataset augmentation method. Dataset augmentation can
not only greatly increase the quantity of training samples but also
enable the deep learning model to learn the internal relationship
between terrain  and  GW  activities.  Without  dataset  augmenta-
tion, the terrain data input to the deep learning model is invariant.

Table 2.   Date range of the training set, validation set and test set.

Model Training and validation set Test set

Model 1 2006.12−2009.05&2010.06−2020.12 2009.06−2010.05

Model 2 2006.12−2010.05&2011.06−2020.12 2010.06−2011.05

Model 3 2006.12−2011.05&2012.06−2020.12 2011.06−2012.05

(a) (b)

Random cut
Splice

 
Figure 7.   Steps of dataset augmentation. (a) Cut the dataset along a

random longitude. (b) Swap the split dataset and re-splice them

together.

Input data

(22 layers)

DCNN

Low-level feature

1×1 Conv

3×3 Conv
rate 6

3×3 Conv
rate 12

3×3 Conv
rate 18

1×1 Conv

1×1 Conv 3×3 Conv

Upsample

Atrous Conv

Concatenate Upsample

Image
Pooling

Encoder

Decoder
Output data

(GW Ep)

 
Figure 8.   The model structure of DeepLab V3+.
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Such constant terrain data are not helpful to the gradient descent
of  the  deep  learning  model’s  parameters,  and  cannot  reflect  the
effect of terrain on GW activity. 

3.2.3  Deep learning model
DeepLab is  a  successful  deep  learning  model  in  the  field  of  se-
mantic  segmentation  and  is  mostly  used  for  image  classification
(Chen LC et  al.,  2018; Ren YY et  al.,  2020). In  this  study,  the  Dee-
pLab  V3+  deep  learning  model  is  used  to  estimate  stratospheric
GW Ep,  and  the  ideal  results  are  also  obtained.  DeepLab  V3+  is
mainly composed of an encoder and a decoder (the model struc-
ture is shown in Figure 8). The Adam optimizer and mean square
error (MSE) loss function are used to train the model. 

4.  Results and Discussion 

4.1  Training Results
As illustrated by Model 2, after 25 epochs of training, the losses of
the  training  set  and  validation  set  are  reduced  to 0.00024 and
0.0003,  respectively  (Figure  9).  Since  the  output  GW Ep of  the
model is normalized (the value range of the GW Ep averaged over
20−30  km  is  0−10  J/kg),  the  calculation  of  the  loss  function  uses
the normalized values of Ep instead of the original values. The MSE
loss function can be expressed as Equation (3).

MSE = 1
m × n

m

∑
i=1

n

∑
j=1

(Tij − Pij)2, (3)

Tij
Pij

where  is  the  normalized  measured  value  of  GW Ep in  the i-th
row and j-th column,  is the normalized estimated value of GW
Ep in the i-th row and j-th column, and m and n are the rows and
columns of Ep grid data, respectively. In this paper the values of m
and n are 120 and 360. In Figure 9, the losses of the validation set
and training set are similar, which means that the model does not
overfit. The final loss of test set is 0.0009.

Figure 10 shows the estimated results of the GW Ep averaged over
20−30  km  from  the  8th  to  the  11th  of  June  2010  by  using  the
trained  DeepLab  V3+  model  (Model  2).  Taking Figure  10b as  an
example,  some  high-value  areas  in  low  latitudes  and  low-value
areas in mid-latitudes can be found in both the measured and es-
timated  GW Ep (shown  as  the  marked  area  in Figure  10b).  In  the
four examples selected in Figure 10, there is stronger GW Ep in the
low latitudes, so the meridional mean GW Ep (both measured and
estimated Ep)  of 20°S−20°N is calculated. The third graph of each

panel in Figure 10 also compares the measured Ep with the estim-
ated Ep of 20°S−20°N, and the longitudes of the extreme points of
the measured and estimated Ep are almost the same (blue lines in
Figure 10), which means that the zonal variation of the estimated
GW Ep is generally consistent with that of the measured values.

However, Figure 10, especially Figure 10d, also shows that the er-

ror between the estimated Ep and the measured Ep in the low-lat-

itude  regions  is  larger  than  that  in  the  mid-latitude  regions.  The

estimated Ep is weaker than the measured Ep,  and a larger Ep res-

ults in a  larger regional  error.  The five main reasons for  this  find-

ing are listed below:

(a) The DeepLab model uses many convolution operations, which

causes the error of the mean Ep within a certain range to be smal-

ler  and  the  error  of  a  single  grid  point  to  be  larger.  As  shown  in

Figure 10a−c, the estimated Ep is smaller than the measured Ep in

the areas where the Ep is larger, while the meridional mean values

between 20°S−20°N of the measured and estimated Ep are almost

the same.

(b) Due to the low horizontal resolution of COSMIC RO data, large

errors  will  inevitably  occur  when  GW Ep calculated by  temperat-

ure profiles is interpolated to a global grid with a 1° × 1° horizont-

al resolution.

(c)  GW Ep in  the  low-latitude  regions  is  greater  than  that  in  the

mid-latitudes, and the RO data in the equatorial and polar regions

are sparser than those in the mid-latitude regions (Wang L and Al-

exander, 2010), so the interpolation errors in low-latitude regions

tend to be amplified.

(d) To minimize the overall error in the training process, the deep

learning  model  learns  the  deep  correlation  between  the  input

data and Ep,  so the estimated value may not perfectly match the

measured GW Ep in some cases. However, the overall error is lower

on long time scales (such as the seasonal mean GW Ep), which will

be illustrated in the next section.

(e) Data with larger Ep account for a small  proportion of the data

and are underrepresented, since most of the data used for model

training have smaller Ep; therefore, the estimated value of the area

with larger Ep will be inaccurate. 

4.2  Seasonal Variation in GW Ep

Due to  the  low  horizontal  resolution  of  daily  RO  data,  the  calcu-

lated daily global distribution of GW Ep is not significantly repres-

entative. Much of the related studies on the calculation of GW Ep

with COSMIC RO data focus on the monthly or  seasonal  trend of

Ep (Xu XH et al., 2018; Yu DC et al., 2019).

To verify whether the model can accurately describe the seasonal

variation in stratospheric GW Ep, this study used the trained mod-

el  to  estimate  GW Ep with the  test  set.  The  measured and estim-

ated  values  of  GW Ep were  seasonally  averaged  separately.  Each

model uses a whole year of data as the test set,  which can be di-

vided into four seasons:  JJA (Jun−Jul−Aug),  SON (Sep−Oct−Nov),

DJF (Dec-Jan-Feb) and MAM (Mar−Apr−May). The seasonal means

of  the  measured  and  estimated  GW Ep of  the  three  models  are

shown in Figure 11−13.
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Figure 9.   Losses of the training set and validation set.
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The  RMSEs  (root  mean  square  errors)  between  the  seasonal

means of the measured and estimated GW Ep in JJA, SON, DJF and

MAM are shown in Table 3.

Xu  XH  et  al.  (2018) pointed  out  that  GW Ep in the  winter  hemi-

sphere is higher than that in the summer hemisphere in extratrop-

ical regions, which might be attributable to the influences of oro-

graphy  and  zonal  wind.  Additionally,  the  GW Ep in equatorial  re-

gions is  higher  than  that  in  extratropical  regions.  These  conclu-

sions can be confirmed by both the measured and estimated val-

ues of GW Ep in JJA and DJF of Figure 11−13. The Southern Hemi-

sphere is  the winter  hemisphere in Figure 12a,  and the GW Ep in

the mid-latitude  regions  of  the  Southern  Hemisphere  is  signific-

antly higher than that in the mid-latitude regions of the Northern

Hemisphere,  while Figure  12c shows  the  opposite  phenomenon.

In terms of seasonal distribution characteristics of GW Ep, there are

also some research results  of  SABER/TIMED satellites  (Zhang Y et

al.,  2012).  Compared  with  the  seasonal  distribution  of Ep in  the

study by Zhang Y et al. (2012), our research results are slightly dif-

ferent,  e.g.,  the Ep in  mid-latitudes during winter  in  their  study is

stronger  than  shown  in  this  study.  This  may  be  due  to  different

data sources and processing methods.

In addition, in the two seasons of JJA and SON, GW Ep is stronger
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Figure 10.   GW Ep averaged over 20−30 km from the 8th to the 11th of June 2010 (the three graphs of each panel from top to bottom indicate

the measured GW Ep, estimated GW Ep and the meridional mean GW Ep of 20°S−20°N, respectively).
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near  80°W  in  the  southern  hemisphere,  and  it  extends  eastward.

This  is  due  to  the  GW  activity  caused  by  the  topography  of  the

Andes  mountains  in  South  America. Figures  11−13 show  that

these  three  models  all  can  accurately  estimate  the  GW Ep in  this

area, which also demonstrates that the deep learning model used

in this study can learn the influence of terrain on GW activity.

Figures  11−13 also show that  the GW activity  of  JJA in  2010 was

significantly  stronger  than  in  2009  and  2011,  and  the  estimated

model results  also  correctly  reflect  this  intensity  variation.  Addi-

tionally,  the  RMSEs  between  the  seasonal  average  values  of  the

measured  and  estimated Ep are  small,  which  indicates  that  the

method used in this paper can accurately reflect the seasonal vari-

ation characteristics of GW activity.
 

4.3  Quasi-biennial Oscillation of GW Ep

QBO usually  refers  to  the  phenomenon where  the  tropical  lower

stratospheric zonal  wind  alternates  between  easterly  and  west-

erly directions. This phenomenon also occurs in the stratospheric

GW Ep in low-latitude regions (Xu XH et al.,  2018).  The QBO of Ep

calculated by COSMIC RO data from 2007-01 to 2013-12 is shown

in Figure 14. A 13-month moving average is performed to remove

the annual change, so that the QBO results will be clearer.

In this study, to enable the deep learning model to learn the QBO

characteristics,  the temperature  and zonal  wind fields  at  50,  100,

and 200 hPa of  the ERA5 reanalysis  dataset  need to be added to

the  input  data,  since  these  wind  fields  in  the  stratosphere  have

significant influence on QBO characteristics.
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Figure 11.   Seasonal means of GW Ep over 20−30 km from Jun 2009 to May 2010 by Model 1 (the three graphs of each panel from top to bottom

indicate the measured GW Ep, estimated GW Ep and error between the measured and estimated Ep, respectively).
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As  illustrated  by  the  example  of  Model  2,  to  verify  whether  the

model can describe the QBO effect of stratospheric GW Ep in low-

latitude regions, this study uses the deep learning model to estim-

ate the GW Ep from 2000 to 2006 (since the data after 2007 are in-

volved in the training of the model, even if the estimated Ep after

2007  exhibits  QBO  characteristics,  it  does  not  indicate  that  the

model  actually  learns  them). Figure  15 shows  the  estimated Ep

from 2000-01 to 2006-12 output by the deep learning model.

As shown in Figure 14, the measured Ep from 2007 to 2013 shows

a significant  QBO effect  in  low-latitude regions,  and strong years

and  weak  years  of  GW Ep alternately appear  in  low-latitude  re-

gions.  Additionally,  QBO occurs in the estimated Ep from 2000 to

2006, as shown in Figure 15. Although the model is unable to ob-

tain measured values of GW Ep from 2000 to 2006 for comparison,

it appears that the trained model has learned the QBO character-

istics of GWs. Although the model can predict the QBO character-

istics of Ep, its QBO amplitude may be less than that of the meas-

ured Ep (Figure14c and 15c), which means that the model cannot

perfectly estimate the long-term variation of GW Ep.

The QBO characteristics of Ep can be learned by the model mainly

because the stratospheric  temperature and zonal  wind in  the in-

put parameters of the model also have QBO characteristics. When

the  stratospheric  temperature  and  zonal  wind  (layers  17−22)  in

the input  parameters  are  omitted,  the  resulting  estimated  aver-

age  GW Ep of  20−30  km  from  2000-01  to  2006-12  is  shown  in

Figure 16,  and there is  no obvious quasi-biennial  variation in the

low-latitude region.
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Figure 12.   Same as Figure 11, but for seasonal means of GW Ep over 20−30 km from Jun 2010 to May 2011 by Model 2.
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5.  Conclusions
In  this  paper,  a  DeepLab  V3+  deep  learning  model  is  applied  to
estimate stratospheric  GW  potential  energy.  Using  direct  map-
ping from the reanalysis data at 50, 100, 200, 500, 700 and 850 hPa
and  terrain  data  to  the  GW Ep averaged  over  20−30  km  can  be

realized.

Since the sources of GWs are mainly terrain, wind shear and deep
convection,  temperature,  wind field,  and relative humidity  in  the
troposphere (500, 700, 850 hPa) are considered as the input of the
model. To reflect the QBO characteristics of GWs, temperature and
zonal wind fields at 50, 100 and 200 hPa need to be added to the
input  data.  A  “cut-swap”  approach  is  applied  to  augment  the
dataset. Additionally, this augmentation method can make the in-
put terrain data changeable, which may help the model learn the
relationship between terrain and GW activities.

The results show the following:
(1)  This  deep learning method can effectively  estimate  the  zonal
trend of the GW Ep averaged over 20−30 km. However, the errors
in low-latitude  regions  are  larger  than  those  in  mid-latitude  re-
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Figure 13.   Same as Figure 11, but for seasonal means of GW Ep over 20−30 km from Jun 2011 to May 2012 by Model 3.

Table 3.   RMSEs between the seasonal means of the measured and
estimated GW Ep.

Model
RMSE (J/kg)

JJA SON DJF MAM

Model 1 0.089 0.063 0.193 0.085

Model 2 0.2 0.06 0.074 0.062

Model 3 0.074 0.068 0.1 0.06

80 Earth and Planetary Physics       doi: 10.26464/epp2022002

 

 
Wu Y and Sheng Z et al.: Application of deep learning to estimate gravity wave

 



gions.  The  main  reason  is  that  the  large  number  of  convolution

operations  used  in  the  deep  learning  model  causes  the  error  of

the mean Ep within a certain range to decrease and the error of a

single grid point to increase. In addition, the horizontal resolution
of  COSMIC  RO  data  is  low,  and  the  RO  data  at  low  latitudes  are
sparser than  those  at  middle  latitudes,  so  the  interpolation  pro-
cess of  constructing the grid data of measured Ep tends to cause
larger errors  at  low  latitudes.  These  errors  also  have  a  great  im-
pact on the accuracy of model training.

(2)  The  estimated  results  of  the  model  show  significant  seasonal
variations  in  which  GW  activity  is  strong  in  winter  and  weak  in
summer.  The  seasonal  variation  reflected  in  the  estimated Ep is
consistent  with  the  measured Ep calculated by  COSMIC  RO  tem-
perature profiles.

(3) This model can learn the QBO characteristics of GWs. With the
input  of  reanalysis  data  from  2000  to  2006  and  terrain  data,  the
average GW Ep at  heights  of  20−30 km during these seven years
estimated  by  the  deep  learning  model  shows  significant  QBO
characteristics.

The significance of this study is the verification of the deep learn-
ing method to estimate GW Ep.  Abundant  reanalysis  data  can be
used  to  estimate  stratospheric  GW Ep in  recent  decades  so  that
the long-term variation in stratospheric GWs in mid- and low-latit-
ude  regions  can  be  determined.  Additionally,  for  future  studies,
numerical prediction can also be considered as inputs of the deep
learning model to realize the prediction of GW Ep. 
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