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Abstract: The cause of substorm onset is not yet understood. Chen CX (2016) proposed an entropy switch model, in which substorm
onset results from the development of interchange instability. In this study, we sought observational evidence for this model by using
Time History of Events and Macroscale Interactions during Substorms (THEMIS) data. We examined two events, one with and the other
without a streamer before substorm onset. In contrast to the stable magnetosphere, where the total magnetic field strength is a
decreasing function and entropy is an increasing function of the downtail distance, in both events the total magnetic field strength and
entropy were reversed before substorm onset. After onset, the total magnetic field strength, entropy, and other plasma quantities
fluctuated. In addition, a statistical study was performed. By confining the events with THEMIS satellites located in the downtail region
between ~8 and ~12 Earth radii, and 3 hours before and after midnight, we found the occurrence rate of the total magnetic field strength
reversal to be 69% and the occurrence rate of entropy reversal to be 77% of the total 205 events.

Keywords: substorm onset; entropy switch model; interchange or ballooning instability; Time History of Events and Macroscale

Interactions during Substorms (THEMIS) data

1. Introduction

Substorms are global reconfigurations of the magnetosphere in-
volving the storage of solar wind energy in the Earth’s magneto-
tail and its abrupt conversion to particle heating and kinetic en-
ergy. They are associated with a dynamic reconfiguration of the
magnetic field and highly variable plasma distributions in the
magnetosphere.

Substorm onset triggers, a controversial topic, have been studied
for many years. The sequence of events leading to substorm on-
set has remained unsolved. There are two main schools of
thought on the cause of substorms. The first “outside-in” emphas-
izes the role of magnetic reconnection in the midtail region (Xgsm
~—15 to —30 Rg, where Rg is the Earth’s radius; Hones, 1977). A
substorm onset follows when a streamer (the accompanying au-
rora signature of a flow burst in the magnetosphere) approaches
the thin arc (Henderson et al, 1998; Sergeev et al., 1999;
Nishimura et al.,, 2010, 2011). The second “inside-out” focuses on
the role of plasma instabilities in the near-Earth magnetotail re-
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gion (Xgsm = —6 to —15 Rg; Lui, 1991). Substorm onsets take place
without a streamer. The two opposing models both have observa-
tional evidence.

Chen CX (2016) proposed a scenario for a substorm onset trigger.
In this model, substorm onset is regarded as a switch on the se-
quence of transport from decreasing entropy to increasing en-
tropy. Entropy pV5/3 (where p is the thermal pressure and V is the
volume of one unit magnetic flux tube) is a critical parameter in
determining the motion of a flux tube and its rest location in the
magnetosphere. In a stable magnetosphere, entropy tends to in-
crease tailward (Wolf et al., 2009).

Pontius and Wolf (1990) and Chen CX and Wolf (1993, 1999) poin-
ted out that a bubble (magnetic flux tube with entropy lower than
its neighbors) would move earthward through the plasma sheet
and come to rest where its entropy matched those of its neigh-
bors. Toffoletto et al. (2000) and Wolf et al. (2002) inferred on the-
oretical grounds that flux tubes with relatively lower entropy
would be injected into the inner magnetosphere (Chen CX and
Wang CP, 2019; Chen CX, 2021) during the substorm growth
phase. Observations reported by Lyons et al. (2003) seemed to
support this view.

As Chen CX (2016) pointed out, in the growth phase of a sub-
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storm, the successive bubbles are in an entropy-decreasing order
because the magnetotail becomes more stretched and the loca-
tion of the reconnection site may shift earthward. In the later
growth phase, an early-arriving high-entropy bubble will block a
later-arriving low-entropy bubble tailward, forming an unstable
domain. The development of the interchange instability leads to
the collapse of the stretched plasma sheet, and the substorm ex-
pansion phase follows.

The entropy switch model (Chen CX, 2016) is a more general mod-
el of substorm onset that combines the inside-out and outside-in
models. For the inside-out situation, the unstable domain is
formed by a sudden decrease in entropy flow with no streamer
before substorm onset, whereas for the outside-in situation, the
unstable domain is formed by a lower entropy bubble with an ac-
companying auroral streamer.

In this study, we sought to check the validity of the entropy switch
model by using observational data. Entropy is a global quantity,
which involves an integral of the volume (of one unit magnetic
flux tube) along the length of a flux tube. Although entropy is dif-
ficult to measure directly, the magnetic field and plasma pressure
inside the unstable domain are observable. When two successive
bubbles are relatively stationary in relation to each other, as
shown in Figure 1, the lengths of their flux tubes are almost the
same because the unstable domain is located at the region
around —8 to —12 Rg, and the tailward dimension of the unstable
domain is less than 1 R (Chen CX, 2016). Thus, entropy is propor-
tional to the measured pressure and inversely proportional to 5/3
power of the measured magnetic field. We used individual events
and statistical analyses to ascertain whether a substorm onset was
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Figure 1. Diagram of an unstable domain.

triggered by the interchange or by ballooning instability.

The remainder of this paper is arranged as follows. The data set
from Time History of Events and Macroscale Interactions during
Substorms (THEMIS; Angelopoulos, 2008) observations is intro-
duced in Section 2. In Section 3, we examine two events, one with
a streamer before substorm onset and the other without a pre-
ceding streamer. In Section 4, we report the results of a statistical
study using 205 events. The summary and discussion are given in
Section 5.

2. Data Set

According to a discussion of the interchange instability in Chen
CX (2013, 2016), we know that the unstable domain should be loc-
ated in the dipolar region near the Earth at about 8 to 12 R in the

magnetotail, and the tailward extension of the unstable domain
should be less than 1 Rg. We utilized observations from the
THEMIS spacecraft (Angelopoulos, 2008).

The quantities of interest were the magnetic field, particle pres-
sure, ion density, and ion velocity. The magnetic field data were
taken from the fluxgate magnetometer (Auster et al., 2008). Data
from the particle detectors of the electrostatic analyzer (ESA;
McFadden et al., 2008) were used for particle pressure, ion dens-
ity, and ion velocity. In addition, all-sky-camera images (Mende et
al., 2008) were used to identify whether an event had a streamer.

The events were chosen based on the following criteria. During
the substorm onset, the THEMIS satellites were located in the radi-
us distance between ~8 and ~12 Rg and at the local time of
3 hours before and after the midnight. The time range of data was
chosen as 2 minutes before and after the substorm onset.

The entropy S (pV5/3) involves an integral of the volume V (of one
unit magnetic flux tube) along the length of a flux tube. The
volume V can be represented as

-fs

where B is the magnetic field and s is the distance along the flux
tube. Thus, the entropy S can be expressed as

s= p(/%)m. )

Because the distance along the flux tube is difficult to measure
directly, we estimated an entropy-related quantity SR instead. The
SR can be expressed as

SR = p(tlg)m. 3)

To compare the entropy S of two neighboring flux tubes, we com-
pared the entropy-related quantity SR instead so that the differ-
encein the lengths of the neighboring flux tubes could be ig-
nored, as indicated in Figure 1.

3. Case Study

3.1 The Event on February 28, 2009, Without a Streamer
At ~02:24 UT on February 28, 2009, a substorm onset event was
detected in the near-Earth region by THEMIS THA and THE (Lui,
2011). THEMIS THA and THE were at (X,Y,Z)ggy = (-8.15, 2.41,
-2.25) Rg and (-8.17, 2.51, -1.56) Rg at 02:24 UT. THEMIS THA and
THE satellite footprints as projected on the Earth’s ionosphere and
their orbits in the XY, XZ, YZ plane of the geocentric solar mag-
netospheric (GSM) coordinate system are shown in Figure 2. Al-
though THA was closer to Earth than THE in the X direction of the
GSM coordinates, THA had a larger radius distance than THE, as
we can see from Figures 2c and 2d as well as in the labels under
the x-axis of Figure 3. Therefore, the footprints of THA on the iono-
sphere were located more poleward than those of THE when pro-
jected from the equatorial plane, as shown in Figure 2a. Both
satellites are located near midnight. In addition, the two space-
craft were separated by 4.5° in azimuth; thus, the two satellites
were roughly in line with the Earth.

Song YX and Chen CX: Observation evidence for the entropy switch model of substorm onset



Footprints 20090228 02:00-03:00

\' h
A\ SR |
@‘ (e 3 \‘4 - (kj)m -8 _6X(R)_4 -2 \\0 -

Earth and Planetary Physics  doi: 10.26464/epp2022020 163

GSM orbit

XY plane

Y (Re)

o = N W
=
!
1

s ‘I . & ad N
X \ WY o 6« 000MIT o \—me Earth ~ | ©
\ v % < XZ plane RN %
‘\“ /‘\rf o =
| == 5L ‘
'~ ‘\’ ‘ 30 8 <6 -4 - 0
(@) N { X (Re)
A 1 — ==
‘~ v > 0 d Earth
' : S YZ lane
Tsyganenko-1989 & 18.00 MLT - N, plane -
L@ il
70 1 3
Y (Re)

Figure 2. THEMIS THA (red) and THE (blue) satellite footprints as projected on the Earth’s ionosphere (a) on February 28, 2009, from 02:00 to
03:00 UT, and their orbits in GSM coordinates (b-d). The footprints were individually projected along the local magnetic field line as described by
the model of Tsyganenko (1989). The 0.00 magnetic local time (MLT) in (a) indicates midnight. The orbits of satellites THA and THE in the XY, XZ,
YZ plane of the GSM coordinate system are shown in (b), (c), and (d). The red line indicates the orbit of THA, and the blue line is the orbit of THE.
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Figure 3. The total magnetic field strengths from THEMIS THA and
THE in GSM coordinates around 02:24 UT on February 28, 2009. The
time range is 2 minutes before and after the substorm onset. The solid
line is the total magnetic field strength of THA, and the dashed line is
the total magnetic field strength of THE. The solid black vertical line
indicates the substorm onset time at ~02:24 UT. The onset time is
determined by the auroral electrojet (AE) index, with a resolution of
one minute. The Earth radius distances of the two spacecraft are
shown under the x-axis.

Figure 3 shows the total magnetic field strength of THA and THE
for this event. The time range is 2 minutes before and after the
substorm onset, with a resolution of 0.25 s. Before the substorm
onset, the total magnetic field strength has a typical value of 26
nT at the THA location and 16 nT at the THE location. In a stable
dipole magnetic field, the total magnetic field strength should

have a distribution of a decreasing function of the distance from
the Earth. Hence, the total magnetic field strength reverses be-
fore the substorm onset. Soon after onset, at 02:24 UT, the total
magnetic field strengths at both the THA and THE locations had
larger changes and significant fluctuation.

The plasma pressures determined by ESA plasma pressure tensor
data are shown in Figure 4. Because both the ion and electron
pressure tensors are symmetric matrices at each moment, with a
3 s time resolution, we diagonalized each matrix for both the ion
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Figure 4. Plasma pressures from THEMIS THA and THE around

02:24 UT on February 28, 2009. The time range is 2 minutes before
and after the substorm onset, the same format as in Figure 3. The solid
line is the THA plasma pressure, and the dashed line is the THE plasma
pressure. The solid black vertical line indicates the substorm onset
time at ~02:24 UT. The onset time is determined by the AE index, with

a resolution of one minute.
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and electron pressure tensor at each moment. We then added the
diagonal elements together as the ion and electron pressure
value, and finally summarized the ion and electron pressure value
as the total pressure. The plasma pressure was about 7,544 eV/cm?®
at the THA location and about 9,012 eV/cm>at the THE location
before substorm onset. In addition, the pressure underwent a viol-
ent change after substorm onset.

From Equation (3), we know that entropy is proportional to pres-
sure and inversely proportional to 5/3 power of the magnetic
field. In this event of the substorm onset at ~02:24 UT on Febru-
ary 28, 2009, the flux tube at the THA location had a larger mag-
netic field and a smaller plasma pressure than those of the flux
tube at the THE location. Assuming the lengths of the flux tubes
passing through THA and THE were almost the same (as can be
seen from the bottom of Figure 3, the spacing of the two neigh-
boring flux tubes passing through the two THEMIS satellites is 0.1
Re, whereas the two satellites are located at 8.7 Rg), we calculated
the entropy at the locations of the two satellites by using Equa-
tion (3). As shown in Figure 5, entropy at the THA location was
smaller than that at the THE location before substorm onset.
Hence, the entropy at the outer bubble of the THA location was
lower than the entropy at the inner bubble of the THE location be-
fore the substorm onset. According to our theory, the outer
bubble has lower entropy than that of the inner bubble, forming
an unstable domain. The development of interchange or balloon-
ing instability manifests as a turbulent evolution and significant
fluctuation (Duan SP et al,, 2021) of the magnetic field, plasma
pressure, and entropy shortly after the onset at 02:24 UT, as
shown in Figures 3-5.

Figure 6 shows the ion density using ESA ion density data, with a 3
s time resolution. The ion density is in order of magnitude consist-
ent with the 0.4/cm® given by Xing X et al. (2012). lon bulk velocit-
ies are shown in Figures 7 and 8 for THA and THE. Here, a right-
handed orthogonal system and a magnetic meridian plane
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Figure 5. Entropy (related) at the THA and THE locations around
02:24 UT on February 28, 2009, the same format as in Figure 2. The
solid line is the THA entropy (related), and the dashed line is the THE
entropy (related). The solid black vertical line indicates the substorm
onset time at ~02:24 UT. The onset time is determined by the AE

index, with a resolution of one minute.
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Figure 6. The ion density from THEMIS THA and THE around

02:24 UT on February 28, 2009. The time range is 2 minutes before
and after the substorm onset, the same format as in Figure 3. The solid
line is the THA ion density, and the dashed line is the THE ion density.
The solid black vertical line indicates the substorm onset time at
~02:24 UT. The onset time is determined by the AE index, with a

resolution of one minute.
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Figure 7. The ion bulk velocity from THEMIS THA around 02:24 UT on
February 28, 2009. The time range is 2 minutes before and after the
substorm onset, the same format as in Figure 3. The solid line

indicates the V, component, the dashed line represents the V,
component, and the dotted line represents the V/, component. The
vertical solid black line indicates the substorm onset time at ~02:24 UT.
The onset time is determined by the AE index, with a resolution of one
minute.

passing through the satellite are used. The direction pointing
from the Earth to the satellite is defined as the V, component dir-
ection. The vV, component direction is perpendicular to this mag-
netic meridian plane and is pointed in a west to east direction.
The Vv, component direction is determined from the V, direction
and the v, direction by the right-handed orthogonal system. Be-
fore onset, flow at the THA location is very weak. Shortly after on-
set, the V, component shows a moderate earthward flow of
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02:22:00 02:23:00 02:24:00 02:25:00 02:26:00 3.2 The Event on February 22, 2008, with a Preceding
THE Streamer

In this subsection, we selected the event at ~09:29 UT on Febru-
ary 22, 2008, observed by THEMIS THD and THE (Nishimura et al.,
2011, supporting information Data Set S1). THEMIS THD and THE

Figure 8. The ion bulk velocity from THEMIS THE around 02:24 UT on
February 28, 2009. The other settings are the same as in Figure 7.

Figure 9. All-sky-camera aurora observations from the KUUJ station used to demonstrate that the onset seen at THEMIS THA and THE coincided
with expansion of the substorm onset. The time range is from 02:18 to 02:29 UT on February 28, 2009.
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Figure 10. THEMIS THD (red) and THE (blue) satellite footprints as projected on the Earth’s ionosphere (a) for February 22, 2008, 09:00 to
10:00 UT, and their orbits in GSM coordinates (b—d). The footprints are individually projected along the local magnetic field line as described by
the model of Tsyganenko (1989). The 0.00 MLT in (a) indicates midnight. The orbits of the THD and THE satellites in the XY, XZ, YZ plane of the
GSM coordinate system are shown in (b), (c), and (d). The red line indicates the THD orbit, and the blue line is the THE orbit.
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were at (X, Y, Z)ggy = (-10.91, —0.05, ~2.66) Re and (~11.26, 0.90,
-2.89) Rg at 09:29 UT. Their footprints as projected on the Earth'’s
ionosphere and orbits in the XY, XZ, YZ plane of the GSM coordin-
ate system are shown in Figure 10. Satellite THE was located
slightly farther away from the Earth than THD, as shown in
Figures 10b, 10c, 10d, and 11 (labels under the x-axis). Satellite
THE was located more poleward than THD when projected from
the equatorial plane to the ionosphere, as shown in Figure 10a.
Both satellites were located near midnight. In addition, the two
spacecraft were separated by 4.73° in azimuth; thus, the two satel-
lites were roughly in line with the Earth.

Figure 11 shows the total magnetic field strengths for this event
from THD and THE. The data resolution and the figure format are
the same as in Figure 3. The total magnetic field strength of THD
was smaller than that of THE before the substorm onset, meaning
there was a total magnetic field strength reversal. The particle
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Figure 11. The total magnetic field strengths from THEMIS THD and
THE in GSM coordinates around 09:29 UT on February 22, 2008. The
other settings are the same as in Figure 3.
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Figure 12. The plasma pressures from THEMIS THD and THE around
09:29 UT on February 22, 2008. The other settings are the same as in
Figure 4.
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Figure 13. Entropy (related) at the THD and THE locations around
09:29 UT on February 22, 2008. The other settings are the same as in
Figure 5.

pressure at the THD location was larger than that at the THE loca-
tion, as shown in Figure 12. The entropy values at THD and THE
are shown in Figure 13, with the assumption that the lengths of
the flux tubes passing through THD and THE were almost the
same. (This can be seen at the bottom of Figure 11, where the spa-
cing of the two neighboring flux tubes passing through the two
THEMIS satellites is 0.4 Rg, whereas the two satellites are located at
11.4 Re.) Thus, we can obtain similar information as with the first
event that the entropy was less at the THE location than at the
THD location. Figures 11 and 13 could also convey the message
that an unstable domain existed just before substorm onset be-
cause of the total magnetic field strength reversal and entropy re-
versal. The ion density using ESA ion density data is given in
Figure 14. The plasma flows at the two satellite regions are shown
in Figures 15 and 16. After the substorm onset, all quantities fluc-
tuated.

The all-sky-camera images from the Inuvik (INUV) station, which
were chosen according to the satellite footprints from Figure 10a,
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Figure 14. The ion density from THEMIS THD and THE around
09:29 UT on February 22, 2008. The other settings are the same as in
Figure 6.
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are shown in Figure 17 with a time range from 09:24 to 09:35 UT
on February 22, 2008. A thin arc appears before the substorm on-
set. A streamer moves equatorward toward the arc, leading to the
substorm onset (from the all-sky image in Figure 17). As can be
seen, the streamer is initially in the north-south direction accom-
panying a flow burst in the magnetosphere, then its direction
turns to east-west as its accompanying flow changes the earth-
ward movement to a spreading in the azimuthal direction.

4. Statistical Analysis

To ascertain whether the total magnetic field strength and en-
tropy reversal are common phenomena for substorm onset, we
performed a statistical study. We adopted the time range of 2
minutes before and after substorm onset, as for the previous two
event case studies. Table ST in the supporting information
provides the 205 substorm onset events selected.

For all 205 events, we found an occurrence rate of the total mag-
netic field strength reversal of 69% (141 events) and an occur-
rence rate of entropy reversal of 77% (158 events). The results are
shown in Figure 18.

An important task before us is how to interpret the occurrence
rates of the total magnetic field strength reversal (69%) and en-
tropy reversal (77%). Several factors may have affected the result-
ing values. First, the criteria used for the event selection may be
crucial. The events were chosen when the THEMIS satellites were
in a location between ~8 and ~12 Rz downtail distance, and the
magnetic local time of the satellite location also needed to be at 3
hours before and after midnight. We then searched for a possible
magnetic reversal among the three satellites THA, THE, and THD.
Second, the separation among THEMIS satellites may have played
a role here. The spacing between satellites could be as narrow as
0.1 Re or as wide as 1.5 Re. Third, the tailward dimension of an un-
stable domain, which was less than 1 Rg, may have had a strong
interactive effect with the separation of the satellites. Two conclu-
sions can be drawn from the above considerations. One is that the
total magnetic field strength reversal was dominant before the
substorm onset. Another is that the total magnetic field strength
reversal occurred mostly in the region between ~8 and ~12 Rg, es-
pecially in the region between ~11 and ~12 Rg.

Figure 17. Aurora images from the all-sky-camera at the INUV station. The black arrow indicates a streamer. The time range is from 09:24 to

09:35 UT on February 22, 2008.
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Figure 18. Statistical results for the total 205 events. The occurrence
rate of the total magnetic field strength reversal was 69% (141
events), and the occurrence rate of entropy reversal was 77% (158
events).

The difference between the occurrence rates of the total magnet-
ic field strength reversal (69%) and entropy reversal (77%) can be
explained by the procedure used in calculating entropy. The ap-
proximation of almost the same lengths of the magnetic flux
tubes passing through the two satellites under consideration may
have yielded a lower entropy value of the tailward satellite than
reality when the separation of the two satellites was relative lar-
ger (e.g., >1 Rg). There were also some events in which the differ-
ence in the total magnetic field strength was very small without
reversal but the plasma pressure had a decreasing distribution
tailward, causing entropy reversal.

We also aimed to identify whether a streamer appeared before
substorm onset. However, we were not able to obtain an accurate
result because the all-sky-camera imagers were not clear enough
to identify a streamer.

5. Discussion and Conclusions

In this study, to verify the entropy switch model of substorm on-
set proposed by Chen CX (2016), we conducted two case studies
by examining two events in detail, one with and one without a
streamer before substorm onset. We then performed a statistical
study using 205 events.

The two events selected revealed many features of substorm on-
set. Before substorm onset, the total magnetic field strength on
the tailward side of the domain should be larger than that on the
earthward side of the domain, whereas the distribution of en-
tropy should be reversed that of the total magnetic field strength.
Such a domain is interchange or ballooning unstable. The devel-
opment of the interchange or ballooning instability will cause the
substorm onset. Magnetic field, plasma pressure, entropy, and ve-
locity will fluctuate following the onset.

Because an interchange or ballooning unstable domain may be
formed by a larger scale magnetospheric convection (without a
streamer) or isolated flows (with a streamer), we used all-sky-cam-
era imagers to check the appearance of a streamer. Because of the
lack of clarity and resolution of the data, we could not distinguish
well whether a streamer occurred before substorm onset for most
cases.

For a more complete perspective, we would like to make compar-
isons with other similar studies, such as those by Xing XY et al.
(2013) and Zhu P et al. (2009). These authors focused on balloon-
ing instability, which has long been proposed as the instability
that initiates substorm onset.

Interchange instability and ballooning instability are similar in
some respects and different in others. Ballooning instability in a
general sense is also a kind of interchange instability. Observa-
tionally, interchange instability and ballooning instability share
the same aurora wave structures investigated by Xing XY et al.
(2013). From the aurora phenomena, these two instabilities are in-
distinguishable. In Figures 4 and 12, an earthward pressure gradi-
ent appears before substorm onset. This pressure gradient was
also observed by Xing XY et al. (2013) and numerically simulated
by Zhu P et al. (2009).

Although interchange instability and ballooning instability share
some similarities, they are two different instabilities. Interchange
instability involves an entropy reversal, and entropy is a global
quantity that is characterized by a whole magnetic flux tube. Con-
versely, ballooning instability requires a locally strong pressure
gradient and “bad” curvature of the magnetic field, which favors a
stretched plasma sheet.

Currently, it is quite a challenging task to distinguish by observa-
tions exactly which instability is responsible for substorm onset.
The entropy switch model of substorm onset (which pays atten-
tion to interchange instability) has merit, as it unifies the opposite
models of outside-in and inside-out. From a more macroscopic
view, if sequences of transport of increasing entropy and decreas-
ing entropy exist, substorm onset must be the turning point from
one sequence to another.

In summary, we found observational evidence for the entropy
switch model of substorm onset. Two detailed events were invest-
igated, one with a preceding streamer and the other without,
which clearly revealed the total magnetic field strength and en-
tropy reversal before a substorm onset. A statistical analysis using
205 events yielded an occurrence rate of the total magnetic field
strength reversal (69%) and an occurrence rate of entropy re-
versal (77%).
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