X
Advance Search
  • Zhou, B. Z., Xue, X. H., Yi, W., Ye, H. L., Zeng, J., Chen, J. S., Wu, J. F., Chen, T. D., and Dou, X. K. (2022). A comparison of MLT wind between meteor radar chain data and SD-WACCM results. Earth Planet. Phys., 6(5), 451–464. doi: 10.26464/epp2022040
    Citation: Zhou, B. Z., Xue, X. H., Yi, W., Ye, H. L., Zeng, J., Chen, J. S., Wu, J. F., Chen, T. D., and Dou, X. K. (2022). A comparison of MLT wind between meteor radar chain data and SD-WACCM results. Earth Planet. Phys., 6(5), 451–464. doi: 10.26464/epp2022040
Open Access    

A comparison of MLT wind between meteor radar chain data and SD-WACCM results

  • A meteor radar chain located along the 120°E meridian in the Northern Hemisphere from low to middle latitudes provides long-term horizontal wind observations of the mesosphere and lower thermosphere (MLT) region. In this study, we report a seasonal variation and its latitudinal feature in the horizontal mean wind in the MLT region observed by six meteor radar instruments located at Mohe (53.5°N, 122.3°E), Beijing (40.3°N, 116.2°E), Mengcheng (33.4°N, 116.5°E), Wuhan (30.6°N, 114.4°E), Kunming (25.6°N, 108.3°E), and Fuke (19.5°N, 109.1°E) stations. In addition, we compare the wind in the MLT region measured by the meteor radar stations with those simulated by the Whole Atmosphere Community Climate Model (WACCM). In general, the WACCM appears to capture well the seasonal and latitudinal variations in the zonal wind component. In particular, the temporal evolution of the eastward zonal wind maximum shifts from July to May as the latitude decreases. However, the simulated WACCM meridional wind exhibits differences from the meteor radar observations.

  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return