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Abstract: With the increase in the coverage area of magnetotelluric data, three-dimensional magnetotelluric modeling in spherical
coordinates and its differences with respect to traditional Cartesian modeling have gradually attracted attention. To fully understand the
influence of the Earth’s curvature and map projection deformations on Cartesian modeling, qualitative and quantitative analyses based
on realistic three-dimensional models need to be examined. Combined with five representative map projections, a type of model
conversion method that transforms the original spherical electrical conductivity model to Cartesian coordinates is described in this study.
The apparent resistivity differences between the spherical western United States electrical conductivity model and the corresponding
five Cartesian models are then compared. The results show that the cylindrical equal distance map projection has the smallest error. A
meridian convergence correction resulting from the deformation of the map projection is introduced to rotate the Cartesian impedance
tensor from grid north to geographic north, which reduces differences from the spherical results. On the basis of the magnetotelluric field
data, the applicability of the Cartesian coordinate system to western and contiguous United States models is quantitatively evaluated.
Precise interpretations of the contiguous United States model were found to require spherical coordinates.

Keywords: spherical magnetotelluric modeling; model conversion; realistic electrical conductivity model; quantitative evaluation

 

 1.  Introduction

Magnetotelluric  forward  modeling  and  inversion  modeling  are

traditionally  performed  in  Cartesian  coordinates  under  the

implicit assumption that the modeling domain is sufficiently small

such  that  all  numerical  considerations  caused  by  the  Earth’s

curvature  may  be  safely  ignored  (Kaufman  and  Keller,  1981;

Berdichevsky  and  Dmitriev,  2008; Chave  and  Jones,  2012; Liu  HY

et  al.,  2022).  Indeed,  magnetotelluric  studies  to  date  have  been

concerned  with  sufficiently  small  spatial  scales  such  that  this

assumption is  easily  justified.  From  radio  and  audio  magnetotel-

luric applications (Yang B et al., 2019) concerned with regions of a

few meters to a few kilometers (Han Q et al.,  2021),  to wideband

and long-period magnetotelluric data intended to probe areas up

to a few thousand kilometers in diameter (Xu S et al., 2019), these
applications were clearly  well  within the range of  applicability  of
the  Cartesian  approximation.  The  forward  methods  generally
used  in  the  Cartesian  magnetotelluric  modeling  mainly  include
the  integral  equation  method  (Wannamaker,  1991),  the  finite
difference  (FD)  method  (Mackie  et  al.,  1994; Kelbert  et  al.,  2014),
the finite volume method (Haber and Ascher, 2001; Jahandari and
Farquharson, 2014), and the finite element method (Ren ZY et al.,
2013; Cai HZ et al., 2021).

This situation changes with the onset of continental-level magne-

totelluric programs,  such as EarthScope (Meltzer,  2003),  AuScope

(Woodcock  et  al.,  2010),  and  SinoProbe  (Dong  SW  et  al.,  2013),

which  are  designed  to  probe  the  electrical  conductivity  in  the

Earth’s  interior  on  a  continental  scale.  In  conjunction  with  a

dramatic  enhancement  in  computational  capabilities,  these

programs present  an  opportunity  to  apply  magnetotelluric  tech-

niques  to  much  larger  spatial  scales  than  ever  before,  perhaps

reaching  well  into  the  Earth’s  transition  zone  with  arrays  that

extend across continents, from shore to shore. These new applica-
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tions  of  magnetotellurics  require  that  we  revisit  the  traditional
Cartesian approximation and explore the numerical effects of the
many  implicit  approximations  that  such  an  approach  presents.
The  major  goal  of  this  research  was  to  study  the  errors  that  the
Cartesian  approximation  could  introduce,  relative  to  global
regional magnetotellurics  modeling performed in spherical  coor-
dinates,  and to  outline  the limits  of  applicability  of  the  Cartesian
approximation in magnetotellurics.

The study of the influence of the Earth’s curvature on electromag-
netic  responses  can  be  traced  back  to  1966. Srivastava  (1966)
derived  an  expression  of  impedance  for  one-dimensional  (1D)
layered spherical and flat Earths, finding that the Earth’s curvature
affects  the  impedance  only  for  periods  greater  than  one  day.  In
fact,  for  the  1D  electrical  conductivity  model,  a  mathematical
conversion relationship exists between the spherical and Cartesian
coordinates. Weidelt (1972) was the first to propose this conversion
equation, later named the “Weidelt transformation.” This method
is based on the equivalence of the electromagnetic wave attenua-
tion and the skin depth; these two components are preserved by
changing the conductivity value and depth of the model. Conver-
sion from spherical  to  Cartesian coordinates  leads  to  an increase
in  conductivity  and  a  decrease  in  depth.  Therefore,  the  Weidelt
transformation  can  be  understood  as  a  type  of  projection  in  the
vertical  direction. Berdichevsky  and  Zhdanov  (1984) and
Schmucker  (1987) further  studied  this  issue  and  concluded  that
the  Earth’s  curvature  is  negligible  within  a  depth  of  1,400  km.
However, these studies focus on 1D models and differ, in terms of
spectrum  analysis,  slightly  from  the  current  magnetotelluric
method.

In the past few years, the effect of the Earth’s curvature on electro-
magnetic  modeling  has  regained  attention  because  of  the  need
for  continuous  large-scale  three-dimensional  (3D)  electrical
conductivity models.  Numerical  simulations  are  applied to  calcu-
late the response of 3D electrical conductivity models in spherical
coordinates. Grayver et al. (2019) calculated the impedance tensor
in  a  spherical  Earth  with  a  3D conductivity  distribution based on
the high-order finite element method and established an equiva-
lent source that results in a valid global tensor. Luo W et al. (2019)
studied  3D  magnetotelluric  forward  modeling  with  a  staggered
grid in  spherical  coordinates  referring to geomagnetic  sounding.
Simultaneously, Han Q et al. (2020) used the same grid setting but
took the electric field as the primary field to operate the spherical
magnetotelluric  simulations.  All  these  studies  compared  the
impedance  or  resistivity  difference  between  traditional  Cartesian
and spherical coordinate results. The effects of the Earth’s curvature
on  a  3D  electrical  conductivity  model  were  found  to  be  much
stronger than those on a 1D model and to depend heavily on the
geographic projection. However, a number of problems remain to
be investigated.  For example,  large-scale magnetotelluric  model-
ing  in  spherical  coordinates  is  undoubtedly  more  accurate,  but
this does not mean that Cartesian coordinates are no longer appli-
cable. Accordingly, a quantitative standard needs to be discussed
and proposed.

In  this  study,  on  the  basis  of  a  realistic  3D  electrical  conductivity
model, we further explore the errors in magnetotelluric modeling
between  spherical  and  Cartesian  coordinate  models.  The  three
overarching goals  of  this  research are  as  follows:  (1)  to  present  a
flow  chart  of  the  model  conversion  from  spherical  to  Cartesian

coordinates; (2) to incorporate the usage of meridian convergence
in impedance rotation; and (3) to quantitatively assess whether a
study area,  such as the western or contiguous United States,  can
still be interpreted using Cartesian coordinates.

 2.  Methodology

eiωt

Here,  we  first  give  a  brief  review  of  magnetotelluric  forward
theory.  After  eliminating  the  magnetic  fields,  the  3D  quasi-static
Maxwell  equations  for  magnetotellurics  are  written  as  a  second-
order  elliptic  system  of  partial  differential  equations  in  terms  of
the electric fields alone (using the time dependence of ):

∇ × ∇ × EEE + iωμσEEE = 0, (1)

EEE ω μ
σ

where  is  the  electric  field,  is  the  angular  frequency,  is  the
magnetic  permeability,  and  is the electrical  conductivity.  Addi-
tionally, the magnetic fields H corresponding to the electric fields
according to Faraday’s law can be expressed as

iωμHHH = ∇ × EEE. (2)

HHHh EEEh

The  magnetotelluric  impedance  tensor Z maps  the  horizontal
magnetic field  onto the horizontal electric field  at the Earth’s
surface:

EEEh = ZZZ ⋅ HHHh. (3)

ZZZ

ZZZ
ZZZ

α

RRR

The tensor  is the fundamental measured parameter of magne-
totellurics  and  is  the  point  at  which  experiment  and  theory  are
connected (Tong XZ et al., 2018). In practical applications, individ-
ual elements of  have to be addressed in a specified coordinate
system,  and  the  coordinate  representation  of  depends  on  the
selection  of  this  system.  In  some  cases,  the  response  tensor Z
needs to be rotated to a specific direction via a clockwise angle ;
the rotation tensor  is

RRR (α) = [ cos (α)
−sin (α) sin (α)

cos (α) ] . (4)

ZZZ′Therefore, the rotated response tensor  is

ZZZ′ = RRR (α) ⋅ ZZZ ⋅ RRR (−α) . (5)

ρ Φ

The impedance tensor can then be used to compute the apparent
resistivity  and phase :

ρ = μ ∣ZZZ∣2/ω, (6)

Φ = arctan ∣ZZZ∣ . (7)

EEE
Eθ Eϕ Er Eθ

To  solve  Equation  (1),  an  FD  method  discretized  on  a  staggered
grid in spherical  coordinates is  used. Following the framework of
Kelbert  et  al.  (2014) and Zhang  H  et  al.  (2019),  we  developed  a
regional  magnetotelluric  modeling  code.  A  sketch  of  the  grid
subdivision  is  shown  in Figure  1a.  The  global  model,  including
both  the  conductive  Earth  and  the  resistive  air,  is  divided  into  a
large number of curved rectangular cells, excepting the areas that
are very close to the poles and the Earth’s core. Our computational
domain  is  denoted  with  red  lines  in Figure  1a.  The  electric  fields
are defined on the edges of every cell bounded by latitude, longi-
tude,  and  radius,  in  terms  of  which  Equation  (1)  is  formulated;
additionally,  the magnetic  fields are defined naturally  on the cell
faces, and the electrical conductivity is defined in each cell center.
Specifically,  in  spherical  coordinates,  is  decomposed into three
components , , and . Component  begins at a low latitude,
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Eϕ Er

Ex Ey Ez

spans to a high latitude, and points toward the geographic North
Pole; component  points from west to east; and component  is
directed downward toward the Earth’s core (Figure 1b). In Cartesian
coordinates, we use the traditional symbols , , and  that point
to grid north, east, and down, respectively (Figure 1c). Han Q et al.
(2020) derived an FD simulation in spherical coordinates, and they
developed 1D layered models and 3D continent–ocean models to
prove  the  correctness  and  stability  of  the  regional  spherical
magnetotelluric forward program.

 3.  Comparative Study
The  workflow  of  magnetotelluric  inversion  begins  with  mapping

the area of interest and the site locations to some sort of Cartesian

framework  and  ends  with  the  co-location  of  the  Cartesian  grid

with  geographic  coordinates  for  geologic  interpretation.  In  the

magnetotelluric practitioner’s toolbox, no standard tools are avail-

able to perform these tasks,  and a variety of homegrown utilities

are  used.  Formally,  these  tasks  may  be  described  as  a  model

conversion that defines the locations of data points in the artificial

Cartesian  coordinates.  In  this  study,  we  explore  the  effects  of

model  conversion  on  the  accuracy  of  the  forward-modeled

responses, as compared with direct modeling in spherical coordi-

nates.

 3.1  Model Conversion
The model conversion process is represented in Figure 2a. Accord-
ing  to  the  geographical  location  information,  it  is  convenient  to
set  up  an  electrical  conductivity  model  in  spherical  coordinates
that is defined by the latitude, longitude, and radius. This spherical
model  is  then  divided  into  two  parts:  the  spherical  electrical

Εr

Εθ

Eϕ

Ex

Ey

Ez

(a)

(c)ϕ

r

θ

(b)

 
Figure 1.   (a) Sketch of the grid subdivision in spherical coordinates. (b) Curved rectangular cell in spherical coordinates. (c) Rectangular cell in

Cartesian coordinates (modified from Zhang H et al., 2019, and Han Q et al., 2020).
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Figure 2.   (a) Flowchart of the model conversion from spherical to Cartesian coordinates. (b) Sketch maps of a Cartesian grid generated from five

representative map projections. The red letters are abbreviations of the map projection methods, and the blue lines or stars refer to nondistortion

locations. The characteristics of these five map projections are given in Table 1.
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conductivity, σ_s,  and  a  spherical  grid, grid_s.  A  map  projection
method is chosen to project grid_s to Cartesian coordinates,  that
is,  the  geography  is  converted  into  length  in  this  step.  However,
because  of  the  use  of  a  regular  grid  in  the  FD  method,  further
equalization  is  necessary  to  obtain  a  Cartesian  grid, grid_c,  as
shown in Figure 2b.  During the conversion from grid_s to grid_c,
the number of  grid cells  remains the same such that,  in  terms of
mathematics, σ_s can be copied directly to grid_c. Assigning elec-
trical conductivity in this way works only for specific map projec-
tions,  such  as  cylindrical  equal  distance.  In  most  map  projection
methods, directly copying the electrical conductivity will lead to a
serious offset  between  the  magnetotelluric  sites  and  the  under-
ground  structure.  Therefore,  we  project  the  center  points  of  the
Cartesian  cells  back  to  spherical  coordinates  by  using  the  same
map  projection  method,  obtaining  a  new  spherical  grid, grid_s2.
Combining the known grid_s and σ_s, we can obtain the electrical
conductivity σ_c of  the  Cartesian  model  by  using  interpolation
methods; the nearest neighbor is used in this paper. The values of
σ_c and grid_c then form the Cartesian model.

Five common  map  projections  (whose  characteristics  and  defini-
tions  are  described  in Table  1 and  Appendix  A)  are  used  to
convert the electrical conductivity model from spherical to Carte-
sian  coordinates.  According  to  the  different  properties  of  these
map  projections,  we  need  to  choose  different  parameters
presenting the  nondistortion locations,  marked by  the  blue  lines
or  stars  in Figure  2b.  To  maintain  the  balance  of  the  model,  the
middle latitude is considered the standard parallel for the cylindri-
cal  equal  distance (eqdcylin)  and cylindrical  equal  area (eqacylin)
projections,  and  the  center  point  of  the  model  is  used  for  the
Universal  Transverse  Mercator  (UTM)  and  azimuthal  equal  area
(eqaazim)  projections  as  the  nondistortion  point.  The  Lambert
conformal  conic  (lambertstd)  projection  requires  two  selected
standard  parallels.  Because  there  are  many  choices,  we  use  the
middle latitude minus and plus one fixed number, keeping these
two parallels at one quarter and three quarters of the model. The
same map projection is then used to compute the magnetotelluric
site locations in the Cartesian coordinate system.

The  western  United  States  model  (hereafter  referred  to  as  WUS)
shown  in Figure  3 is  the  original  spherical  model  used  for  the
model  conversion  and  is  the  result  of  a  3D  magnetotelluric  data
inversion providing a regional-scale view of the electrical conduc-
tivity  from the middle crust  to nearly  the mantle  transition zone,
covering  an  area  from  northwest  Washington  to  northwest

Colorado  (Meqbel  et  al.,  2014).  This  WUS  model  arches  across
approximately  14  latitudes  and  25  longitudes,  including  part  of
the Pacific  Ocean.  The entire  area is  discretized into 124 × 156 ×
43  cells,  with  the  conductivity  defined  in  the  center  of  each  cell.
The  cell  thicknesses  are  500  m  in  the  upper  part  of  the  model,
increasing logarithmically downward to a depth of 1,468 km. The
full  magnetotelluric  impedance  tensor  is  sampled  at  325  sites
distributed  on  a  quasi-regular  two-dimensional  array  with  site
spacings of approximately 70 km in both horizontal directions.

Figure  4 shows  the  model  conversion  process  and  the  results  of
the  five  map  projection  methods.  For  each  projection,  three
panels are shown to evaluate its effect from different perspectives.
The first panel shows an interpolation diagram, which is a key step
showing how to obtain σ_c for the Cartesian model. The red dots
represent the locations of the spherical conductivity σ_s,  and the
blue  dots  represent  the  cell  centers  of grid_s2;  that  is,  the  blue
dots  show the  locations  where  interpolation  is  needed.  The  best
situation occurs when the blue dots and red dots can completely
overlap,  such  as  with  the  eqdcylin  projection.  If  the  blue  dots
expand outward beyond the red dots,  this  part  will  not  be inter-
polated  and  the  corresponding  regions  of  the  Cartesian  model
will  be  null.  If  the  blue  points  shrink,  they  will  have  repeated
values. In other words, the original spherical electrical conductivity
indicated  by  the  red  dots  cannot  be  accurately  passed  to  the
Cartesian model when the blue dots expand or shrink because of
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Figure 3.   Depth section at 1 km of the western United States (WUS)

conductivity model. The black dashed lines represent the coastline,

and the solid black lines represent the boundaries of the states.

Table 1.   List of the five map projection methods (Snyder, 1987).

Abbreviation Type Properties

eqdcylin Cylindrical
Equal distance, scale is true along all meridians and the standard parallel, scale is constant along
any other parallels, distortion of both shape and area increase with distance from the standard
parallel.

eqacylin Cylindrical Equal area, shape distortion increases with distance from the standard parallel.

UTM Cylindrical
Conformal, Universal Transverse Mercator system divides the Earth into zones (each 8° × 6° in
extent) that use formulas for a transverse version of the Mercator projection, with projection and
ellipsoid parameters designed to limit distortion.

lambertstd Conic Conformal, scale is true along the two selected standard parallels, distortion is constant along any
other parallel, conformal everywhere but the poles, not equal area or equal distance.

eqaazim Azimuthal Equal area, only the center point is free of distortion, scale is true only at the center point,
increasing tangentially and decreasing radially with distance from the center point.
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Figure 4.   Model conversion results for the five map projections, with the projection method corresponding to the numbers as follows:

(a) eqdcylin; (b) eqacylin; (c) UTM; (d) lambertstd; and (e) eqaazim.
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the  distortion  of  the  map  projection.  For  example,  the  blue  dots
from the UTM, lambertstd, and eqaazim map projections present
expansion at high latitudes and shrinkage at low latitudes.

σdiff =∣log10(σ_s) − log10(σ_c)∣

The  second  panel  shows  the  transformed  Cartesian  electrical
conductivity  model,  with  the  coastline  and  state  boundaries
projected  using  the  same  method.  Visually,  these  five  Cartesian
models can be approximately divided into two types according to
their deformation: the UTM, lambertstd, and eqaazim projections
maintain  the  curvature  of  the  Earth,  whereas  the  eqdcylin  and
eqacylin  projections  seem  suitable  for  Cartesian  coordinates  and
show  a  more  balanced  shape.  The  third  panel  shows  the  model
difference, which is the difference in the conductivity between the
WUS  model  and  its  related  Cartesian  model,  taking 

.  The  distribution  of  the  model  differences
is closely related to the characteristics of the adopted map projec-
tion  and  has  an  intuitive  correlation  with  the  interpolation
diagram.  We  can  conclude  that  basically  no  distortion  occurs  in
the obtained Cartesian model near the projection standard paral-
lels or centers. However, with increasing distance from the projec-
tion  standard  parallels  or  centers,  the  distortion  of  the  Cartesian
model becomes increasingly serious.

 3.2  Differences Between the Apparent Resistivities

ρdiff

In magnetotelluric sounding, the apparent resistivity is one of the
intuitive  parameters  reflecting  the  underground  electrical
conductivity distribution and is often used as an input parameter
for  inversion.  In  this  section,  we  further  compare  the  difference
between the  apparent  resistivity  calculated  in  spherical  coordi-
nates  and  that  calculated  in  Cartesian  coordinates.  To  make  a
quantitative  comparison,  Equation  (8)  gives  an  expression  of  the
apparent resistivity difference :

ρdiff =
»»»»»»log10 (ρsρc )»»»»»» , (8)

ρc
ρxy ρyx ρs

ρxy ρyx ρθϕ ρϕθ

where  is the apparent resistivity calculated in Cartesian coordi-
nates,  consisting  of  two  components  and ,  and  is  the
apparent  resistivity  calculated  in  spherical  coordinates;  its  two
components  that  correspond  to  and  are  and ,
respectively.  For  convenience  in  the  following  description,  we
define

ρxy−diff =
»»»»»»»»log10 (ρθϕρxy

)»»»»»»»»
and ρyx−diff =

»»»»»»»»log10 (ρϕθρyx
)»»»»»»»» .

ρdiff ρdiff−s

ρdiff

ρdiff

The distribution of  is  represented in Figure 5,  where  in
each subplot title indicates the average difference over all sites for
one period. The results show that the  values are the smallest
between the Cartesian model projected by eqdcylin and the origi-
nal spherical model. As introduced in Table 1, the cylindrical equal
distance  method  projects  the  global  model  into  a  cylinder,  with
the distances  along  the  middle  latitude  being  conserved.  There-
fore,  large  values  are  primarily  distributed  at  relatively  high
and low latitude regions, and in the area along the middle latitude,
namely the middle belt of the model, the difference is nearly zero.

 4.  Meridian Convergence

Although less obvious than the map projection, accurate regional
data  interpretation  requires  that  all  data  be  oriented  along  the
north  of  the  model  grid.  For  field  data  that  are  oriented  to
geographic north, this requirement holds in spherical coordinates.
However,  once  the  model  is  converted  to  Cartesian  coordinates
according to some map projections, this data orientation assump-
tion no longer strictly holds. At all longitudes except for the longi-
tude of the grid center, the field data are now oriented at an angle
to the grid north (or Cartesian x-axis): in the Northern Hemisphere,
they  point  inward,  whereas  in  the  Southern  Hemisphere,  they
point  outward  relative  to  the  Cartesian  grid  north.  This
phenomenon is best known as meridian convergence and is well
recognized  and  corrected  for  in  geodesy  and  cartography  (Reilly
and  Bibby,  1975; Soler  and  Fury,  2000).  For  continental-scale
magnetotelluric  applications,  meridian  convergence  is  yet
another  effect  contributing  to  the  inaccuracy  of  the  Cartesian
approximation  and  needs  to  be  accounted  for  and  corrected
within  the  framework  of  this  comparison.  That  is,  when  we
compare  the  differences  in  the  forward  data,  we  need  to  ensure
that they are in the same direction. The data orientation correction
angles  can  be  analytically  computed  for  most  map  projections.
Here,  we  derive  these  expressions  for  the  five  map  projections
outlined  in Table  1.  We  then  analyze  the  effect  of  the  meridian
correction on the realistic WUS conductivity model.

γ

γ

A schematic diagram of the meridian convergence in the Northern
Hemisphere  is  shown  in Figure  6.  The  computed  impedance
tensor from the Cartesian model at location P points to grid north,
indicated by the straight  red arrow,  whereas  the direction of  the
spherical impedance is consistent with the tangent red arrow T. If
the  meridian  convergence  angle  is  known,  the  Cartesian
impedance  can  be  rotated  to  the T direction.  According  to  the
definition, the meridian convergence angle  is zero at the central
meridian, is positive when P is east of the central meridian, and is
negative when P is west of the central meridian.

γ
Even  though  many  formulas  exist  for  calculating  the  meridian
convergence  angle ,  it  can  be  derived  from  a  single  principle.
Assuming the mapping equations for P are

x = f (φ, λ) , (9)

y = g(φ, λ), (10)

φ λ f
g

where  and  are the latitude and longitude of P,  respectively, 
and  represent  the  projection  functions  mapping  latitude  and
longitude, respectively,  to the x–y-axis.  The total differentials of x
and y are

dx = ∂x
∂φ

dφ +
∂x
∂λ

dλ, (11)

dy =
∂y
∂φ

dφ +
∂y
∂λ

dλ. (12)

λFor the meridian, we can take  as a constant and the total differ-
entials can be rewritten as

dx = ∂x
∂φ

dφ + 0, (13)

dy =
∂y
∂φ

dφ + 0. (14)

γFinally, the meridian convergence angle  defined above is given

504 Earth and Planetary Physics       doi: 10.26464/epp2023048

 

 
Han Q and Hu XY: 3D spherical magnetotelluric modeling

 



by

tanγ = −
dx
dy

= −

∂x
∂φ
∂y
∂φ

. (15)

γ

f

φ ∂x
∂φ

As  long  as  the  projection  function  is  determined,  according  to

Equation  (15),  its  corresponding  meridian  convergence  angle 

can easily be derived. The eqdcylin and eqacylin projections have

a convergence angle of 0 because their mapping equation  is not

a function of , such that  is always 0. For UTM,

Γ = tan−1 [tan (λ − λ0) sinφ] , (16)

λ0where  is the center meridian. For lambertstd,

γ = n(λ − λ0), (17)

n =
ln (cosφ1/cosφ2)

ln [tan (π
4
+
φ2

2
) /tan (π

4
+
φ1

2
)] , (18)

n φ1 φ2 φ1

φ2

γ

where  is  a  constant  coefficient  that  is  defined  by  and ; 
and  are the two standard parallels or latitudes of the lambertstd
map projection. For eqaazim, the tangent of  is a mixed operation
of trigonometric functions and can be summarized as

tanγ = f (sinφ, cosφ, sinφ1, cosφ1, sin(λ − λ0), cos(λ − λ0)), (19)

φ1where  is  the  standard parallel  or  latitude used in  the  eqaazim
projection.

ρyx-diffρdiff-s: 0.20686

0.2

0.4

0.6

0.8

1.048°N

45°N

42°N

39°N

125°W 120°W 115°W 110°W 

ρyx-diffρdiff-s: 0.19413

0.2

0.4

0.6

0.8

1.0

48°N

45°N

42°N

39°N

125°W 120°W 115°W 110°W 

ρxy-diffρdiff-s: 0.20297

0.2

0.4

0.6

0.8

48°N

45°N

42°N

39°N

125°W 120°W 115°W 110°W 

ρxy-diff

0.2

0.4

0.6

0.8

ρdiff-s: 0.19777

48°N

45°N

42°N

39°N

125°W 120°W 115°W 110°W 

ρyx-diffρdiff-s: 0.01503

0.02

0.04

0.0648°N

45°N

42°N

39°N

125°W 120°W 115°W 110°W 

ρdiff-s: 0.11076 ρyx-diff

0.2

0.4

0.6

0.8

1.048°N

45°N

42°N

39°N

125°W 120°W 115°W 110°W 

ρyx-diffρdiff-s: 0.19427

0.2

0.4

0.6

0.8

1.0
48°N

45°N

42°N

39°N

125°W 120°W 115°W 110°W 

ρdiff-s: 0.01131

48°N

45°N

42°N

39°N

0.02

0.04

0.06

ρxy-diff

125°W 120°W 115°W 110°W 

ρxy-diff

ρdiff-s: 0.15163

0.2

0.4

0.6

0.8

1.0
48°N

45°N

42°N

39°N

125°W 120°W 115°W 110°W 

ρxy-diff

ρdiff-s: 0.19072

0.2

0.4

0.6

0.848°N

45°N

42°N

39°N

125°W 120°W 115°W 110°W 

Eqdcylin Eqacylin UTM

Lambertstd Eqaazim

 
Figure 5.   Apparent resistivity difference between the original spherical model and the transformed Cartesian models in Figure 4 for a period of

100 s. The black dots indicate the locations of the magnetotelluric sites.
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Equations  (16)  to  (19)  indicate  that  the  meridian  convergence
angle  is  zero  for  regular  cylindrical  projections  and  is  a  simple
function of  latitude for  regular  conic and polar  azimuthal  projec-
tions. The definitions of other types of map projections can result
in more complicated sets  of  equations.  In  this  case,  the meridian
convergence angle needs to be carefully derived from the original
principle. Appendix A gives the definitions of the five map projec-
tions in this study, showing the forward projection from spherical
coordinates to Cartesian coordinates and the details of the deriva-
tion  process  for  their  corresponding  meridian  convergence
angles.

γ

γ
α

After the meridian convergence angle  is determined, the rotated
impedance  can  be  calculated  by  using  Equation  (5),  and  the
meridian convergence angle  at the magnetotelluric site is taken
to be the rotation angle . We applied this meridian convergence
correction  to  the  impedance  calculated  from  the  Cartesian
models  (i.e.,  rotating Z from  grid  north  to  geographic  north  to
maintain consistency with the direction of  impedance calculated
from the spherical model) projected by the lambertstd, UTM, and
eqaazim projections.

To  avoid  the  contingency  of  the  results,  we  recalculated  the
forward results of the spherical and Cartesian models by using the

ρdiff−s

same  frequency  as  the  field  data  (from  7.31  to  18,724  s,  30
frequencies  in  total).  Similarly,  we  then  calculated  the  apparent
resistivity and phase for comparison. Figure 7 shows the variation
of  with respect to the period. The red lines in Figure 7 repre-
sent the original error, and the black lines represent the error after
the  meridian  convergence  correction.  The  results  shown  in
Figure  7 prove  that  the  meridian  convergence  correction  can
further  reduce the forward difference between the spherical  and
Cartesian models.

ρdiff
ρdiff

ρdiff
ρdiff

ρdiff

ρdiff−s ρdiff

ρs ρc

To better  understand the influence of  the meridian convergence
correction on the forward results  for  a  single period and magne-
totelluric site, we take the lambertstd map projection as an exam-
ple. Figure 8 shows the distribution of  in two selected periods,
with  the  base  map  showing  after  the  meridian  convergence
correction.  All  the  arrows  on  the  magnetotelluric  sites  point  to
geographic  north,  and  the  length  of  each  arrow  indicates  the
change  in  from  before  to  after  the  meridian  convergence
correction.  A  red  arrow  indicates  that  has  increased,  and  a
green  arrow  indicates  that  has  decreased.  As  shown  in
Figure 8, most sites are marked with green arrows, and the larger
amplitude  changes  are  primarily  concentrated  at  lateral  sites.
Even  though  shows  a  decreasing  trend,  the  values  of
some  sites  marked  by  red  arrows  increased  after  the  meridian
convergence correction. This situation occurs when  matches 
well and the impedance rotation increases their difference.

γ

γ
ρdiff

Figure  9 presents  the  apparent  resistivities  and  phases  of  four
magnetotelluric  sites.  The  blue  circles  and  red  crosses  represent
the apparent resistivities of the spherical model and the lambertstd
Cartesian  model,  respectively,  and  the  black  triangles  represent
the apparent resistivity after the meridian convergence correction.
If  the  original  Cartesian  apparent  resistivity  was  a  poor  fit  with
that of  the spherical  model,  an obvious correction occurred after
the impedance rotation by the angle  (e.g.,  WYK17,  ORG03,  and
MTG18). These sites are usually located on the sides of the model
far from the middle longitude, that is, they have large values of .
The  situation  for  site  CAQ01  is  relatively  complicated:  the 
value  after  the  meridian  convergence  correction  increased  close
to 100 s.  However,  from either  a  qualitative or  quantitative view,
the corrected apparent resistivity fit better with that of the spheri-
cal model.

 5.  Quantitative Evaluation
In  the  previous  sections,  we  explained  how  to  perform  a  model
conversion and compared the differences in the apparent resistiv-
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Figure 6.   Schematic diagram of meridian convergence. Point P is a

given point in the Northern Hemisphere, the central meridian appears

as a straight line (the grid north axis), line T is the tangent line to the

meridian at P, and  is the meridian convergence angle, the angle

measured clockwise from the tangent line to grid north, with a range

of [−90°, 90°].
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ρdiff−sFigure 7.   Variation in  with respect to the periods between the spherical and Cartesian models transformed by the UTM, lambertstd, and

eqaazim map projections. The black lines show the error after the meridian convergence correction, and the red lines indicate the error without

the correction.
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ities calculated in different coordinate systems.

ρdiff

5% × 2
√∣Zxy∣ × ∣Zyx∣ Zxy Zyx

In this section, we quantitatively evaluate whether Cartesian coor-
dinates  are  suitable  for  the  WUS  model  through  a  comparison
with  field  data.  Magnetotelluric  inversion  algorithms,  such  as
nonlinear  conjugate gradient  algorithms,  usually  set  a  floor  error
to control the offset between the forward data and the field data
(Egbert  and  Kelbert,  2012).  When  the  offset  is  within  this  floor
error,  the  inversion  model  is  considered  acceptable.  We  applied
this  setting  to  our  quantitative  evaluation,  that  is,  if  was
smaller  than  the  floor  error,  we  concluded  that  the  influence  of
the Earth’s curvature could be ignored, otherwise it  could not be
ignored. The floor error is not a fixed value but is usually within 10%
in magnetotelluric inversions; here, we used 5% and a calculation

formula  of ,  where  and  are  the

impedances of the field data.

Figure  10 presents  the  apparent  resistivities  and  phases  of  the
field  data.  (The  field  data  are  shown  with  error  bars,  where  blue
error  bars  indicate  the  real  measurement  error  and  orange  error
bars  indicate the 5% floor  error.)  Cartesian and spherical  forward
data  of  three  representative  sites  were  selected  from  the  325
magnetotelluric  sites.  According  to  the  previous  comparison
results  in  Section  3,  the  Cartesian  forward  data  compared  here
were  calculated  from  the  Cartesian  model  transformed  from  the

eqdcylin projection.

ρdiff

Figure 10 shows that sites MTB14 and MTD17 have some common

characteristics:  both the spherical and Cartesian forward data are

a poor fit with the field data, and their apparent resistivity curves

are obviously separate when compared with site IDI11. However,

for MTB14,  is larger than the real error but smaller than the 5%

floor  error,  and  for  MTD17,  it  is  larger  than  the  5%  floor  error

within  a  certain  period.  According  to  our  statistics  of  the  325

magnetotelluric  sites,  only  6%  of  sites  are  similar  to  MTD17.  The

spherical  and  Cartesian  apparent  resistivity  curves  for  more  than

80%  of  the  sites  are  coincident  with  IDI11,  fit  the  field  data  well,

and  show  almost  no  difference.  In  this  case,  we  concluded  that

the WUS model could still be simulated by using Cartesian coordi-

nates, given an appropriate model conversion method.

 6.  Continental-Scale Three-Dimensional
Magnetotelluric Comparison

A study area similar to the WUS can still be simulated, inverted, or
interpreted by using the Cartesian coordinate system after adopt-
ing appropriate map projection methods. If the scope of the study
area is further expanded, such as to the contiguous United States,
whether  Cartesian  coordinates  are  still  applicable  needs  to  be
reevaluated. Figure 11 shows two depth sections from a 3D elec-
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Figure 8.   Distribution of  (spherical model vs. the lambertstd Cartesian model) after the meridian convergence correction for two periods (T =

102.4 s and T = 11,915.64 s). The length of the arrow drawn at each site indicates the change in , where green indicates that the Cartesian

apparent resistivity is closer to the spherical apparent resistivity after the meridian convergence correction, and red indicates the opposite. All the

arrows point to geographic north, and their angle with respect to grid north indicates .

Earth and Planetary Physics       doi: 10.26464/epp2023048 507

 

 
Han Q and Hu XY: 3D spherical magnetotelluric modeling

 



trical conductivity model of the contiguous United States, having
a resolution of 0.25° in latitude and 0.5° in longitude (Kelbert et al.,
2019).  Incorporating  the  findings  from  the  previous  sections,  we
transformed this  continental  United  States  model  to  its  corre-
sponding  Cartesian  model  by  using  a  cylindrical  equal  distance
map  projection  with  a  middle  latitude  of  37°N  as  the  standard
parallel,  resulting  in  a  Cartesian  model  with  a  resolution  of
28 × 44 km.

ρdiff−p ρdiff−p
ρdiff

ρdiff−p

ρdiff−p

The  apparent  resistivities  of  the  total  933  magnetotelluric  sites
were  calculated  in  the  different  coordinate  systems. Figure  12
demonstrates the spatial  distribution of ,  where  is  the
average value of  over 30 periods for one magnetotelluric site.
We concluded that the distribution of  conforms to the rules
of a cylindrical equal distance map projection. The value of 
is  smallest  along  the  middle  latitude  area  and  is  relatively  larger
along the east coast and in the northern regions of the contiguous
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Figure 9.   Apparent resistivities and phases of four magnetotelluric sites. The blue circles and red crosses represent the apparent resistivities of

the spherical and lambertstd Cartesian models, respectively, and the black triangles represent the apparent resistivities and phases after the

meridian convergence correction.
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United States.

ρdiff−p

Figure  13 shows  the  apparent  resistivities  and  phases  of  three

selected  magnetotelluric  sites  (WAC08,  MNC39,  and  WAD10)

whose  values  are  larger  than 0.07,  where the separation of

the spherical and Cartesian apparent resistivity curves is very obvi-

ous.

ρdiff

Following  the  quantitative  rules  of  the  WUS  model,  we  made
corresponding quantitative evaluations for the contiguous United
States  model.  The  magnetotelluric  sites  with  values  greater
than the 5% floor error are marked as black triangles in Figure 14.

These  magnetotelluric  sites  are  seriously  affected  by  the  Earth’s
curvature and account for 12% of the total sites. Accordingly, this
contiguous United States model may not be suitable for Cartesian
coordinates  for  two main reasons.  One is  that  the distribution of
the  magnetotelluric  sites  in Figure  14 is  no  longer  scattered  but
shows continuity  and  regionality.  This  may  mislead  magnetotel-
luric  interpretations  in  such  areas,  especially  interpretations  that
need  to  use  the  inverted  resistivity  to  infer  the  water  content,
temperature,  or  both.  The  second  reason  is  that  the  contiguous
United  States  model  in  this  study  is  incomplete;  the  electrical
conductivity in the southern part of the model has extremely low
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Figure 10.   Apparent resistivities and phases of the western United States model. The blue circles, red crosses, and green stars represent the

magnetotelluric field data, spherical forward data, and Cartesian forward data, respectively, the blue error bars represent the real measurement

error, and the orange error bars represent the 5% floor error.
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Figure 11.   Depth sections from the three-dimensional electrical conductivity model of the contiguous United States at 10 km (left) and 50 km

(right).
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Figure 12.   Distribution of  for the three-dimensional contiguous United States electrical conductivity model. The magnetotelluric sites are

represented by triangles, with the color fill in each triangle indicating the value of .
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resolution,  and  the  magnetotelluric  sites  do  not  cover  the  entire
model area. We predict that the number or percentage of magne-
totelluric  sites  in Figure  14 will  increase  once  the  contiguous
United States model is complete.

 7.  Discussion

ρdiff

ρdiff

A series of comparative experiments were performed to study the
difference between the apparent resistivities calculated in spheri-
cal  and  Cartesian  coordinates.  Both  calculations  used  numerical
simulation  methods.  Even  though  the  control  parameters  in  the
numerical simulations were the same, calculation errors were still
inevitable. This led to the following problem: How can it be deter-
mined whether the compared difference is caused by the different
coordinate systems or by the calculation itself? Consequently, we
rarely  used  a  single  data  point  for  a  comparative  analysis  but
rather  compared  the  average  values  of  and  examined  the
overall differences. Strong evidence exists that the distribution of

 in Figure  5 matches  the  characteristics  of  the  corresponding
map  projections,  indirectly  proving  that  the  influence  of  the
Earth’s curvature is primary.

The comparative experiments in Section 3 showed that the appar-
ent  resistivity  calculated  from  the  Cartesian  model  obtained  by
the  eqdcylin  projection  is  the  closest  to  the  calculation  result  of
the  spherical  model.  The  reason  this  cylindrical  equal  distance
method performs best may be related to the 3D magnetotelluric

ρdiff

ρdiff

simulation method. Both spherical and Cartesian coordinates use
the  FD  simulation  method.  This  method  calculates  the  edge
length as a basic component to obtain other geometric elements.
The smallest apparent resistivity difference  may be generated
by  the  projection  method  that  can  maintain  the  distance  or  the
length  without  distortion  to  the  greatest  extent.  The  second
smallest  arises  from  the  eqacylin  map  projection.  Note  that
both eqdcylin  and eqacylin  are  cylindrical  projection methods.  A
cylindrical  surface  can  be  expanded  into  a  rectangular  plane,
which naturally adapts to Cartesian coordinates.

We  cannot  conclude,  however,  that  the  cylindrical  projection
method  is  superior  to  other  methods.  The  characteristics  of  the
selected  research  area  WUS  represent  only  one  of  the  important
influencing  factors.  As  shown  in Figure  3,  the  WUS  model  is
located in the mid-latitude zone and primarily extends east–west,
which guarantees that the upper and lower boundaries are not far
from  the  middle  latitude.  If  the  research  area  is  oriented
south–north,  or  close  to  the  Earth’s  poles  where  the  arc  length
changes  significantly,  the  error  of  cylindrical  projections  will
increase.  In  this  case,  other  types  of  map  projection  methods,
such as UTM or eqaazim, may be more appropriate.

The  inversion  control  parameter,  namely  the  5%  floor  error,  was
used  as  a  benchmark  in  the  quantitative  evaluations.  The  floor
error  is  not  a  fixed  value  and  can  be  adjusted  according  to  the
quality of the field data. If the floor error is set to a large value (e.g.,
10%, which is not rigorous), it may affect the conclusion concerning
whether  Cartesian  coordinates  can  be  used  in  the  contiguous
United States model. One obvious advantage of spherical magne-
totelluric  simulations  is  that  they  no  longer  require  the  map
projection  step  and  can  effectively  avoid  errors  caused  by
improper projections. Moreover, in the subsequent interpretation,
the  spherical  electrical  conductivity  model  matches  the  surface
topography and other geological information well.

 8.  Conclusions
When implementing a large-scale magnetotelluric simulation, the
traditional Cartesian  coordinate  approximation  may  not  be  suit-
able because of the nonnegligible curvature of  the Earth.  On the
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Figure 13.   Apparent resistivities and phases calculated from the contiguous United States model. The blue circles, red crosses, and green stars

represent the magnetotelluric field data, spherical forward data, and Cartesian forward data, respectively, the blue error bars represent the real
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basis of a real 3D conductivity model, we used a newly developed
regional spherical  magnetotelluric  program to explore the differ-
ence  between  spherical  and  Cartesian  simulations.  The  apparent
resistivity calculated from a Cartesian model  obtained by a cylin-
drical equal distance projection is closest to the results calculated
directly from the spherical model. For Cartesian models obtained
by  noncylindrical  projections,  their  impedance  requires  meridian
convergence  correction,  which  can  help  reduce  their  difference
from  the  spherical  results.  Quantitative  evaluations  showed  that
Cartesian coordinates can still be used in the WUS model but that
the  contiguous  United  States  model  is  no  longer  suitable  for
Cartesian  coordinates.  At  present,  the  calculation  time  of  the
regional  spherical  magnetotelluric  program  is  approximately
twice that  of  Cartesian  programs.  Improving  the  calculation  effi-
ciency and completing the inversion code will be a topic of future
work.
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Appendix A: Definitions of five map projection methods and derivation of the meridian
convergence angle
Five widely used map projections were introduced in this  article.
Here, we present their formulas and describe some critical param-
eters  that  control  the  projections.  For  the  cylindrical  equal
distance projection,

x = R (λ − λ0) cosφ1, (A1)
y = Rφ. (A2)

For the cylindrical equal area projection,

x = R (λ − λ0) cosφ1, (A3)
y = Rsinφ/cosφ1. (A4)

For the Lambert conformal conic projection,

x = τsin [n (λ − λ0)] , (A5)
y = τ0 − τcos [n (λ − λ0)] , (A6)

of which

n =
ln (cosφ1secφ2)

ln [tan (1
4
π + 1

2
φ2) cot (1

4
π + 1

2
φ1)] , (A7)

τ = Fcotn (1
4
π + 1

2
φ) , (A8)

τ0 = Fcotn (1
4
π + 1

2
φ0) , (A9)

F =
cosφ1tann (1

4
π + 1

2
φ1)

n . (A10)

For the Lambert azimuthal equal area projection,

x = RKcosφsin(λ − λ0), (A11)
y = RK [cosφ1sinφ − sinφ1cosφcos(λ − λ0)] , (A12)

where

K = {2/ [1 + sinφ1sinφ + cosφ1cosφcos(λ − λ0)] }1/2. (A13)

The  Universal  Transverse  Mercator  (UTM)  system  is  not  a  single
map projection. It divides the Earth into 60 zones, with each zone
being a 6° band of longitude, and uses a secant transverse Mercator
projection in each zone:

x = Rk0arctan B, (A14)
y = Rk0 {arctan [tanφ/cos (λ − λ0)] − φ0} , (A15)

B = cosφsin (λ − λ0) . (A16)

The symbols in the equations above are listed here:

λ : the longitude of the location to project.

φ : the latitude of the location to project.

φ1 φ2, : standard parallels where the scale of the projection is true.

λ0 : the central meridian of the map.

φ0 : the central parallel of the map.

x : the horizontal coordinate of the projected location on the map.

y : the vertical coordinate of the projected location on the map.

R  : the radius of the sphere.

k0 : the scale factor along the central meridian.

γ
φ

γ
τ0 F

According to Equation (18),  we can deduce the meridian conver-
gence  angle  when  we  know  the  projection  relationship.  The
derivation  of x with  respect  to  is  zero  for  the  cylindrical  equal
distance  and  area  projections,  resulting  in  being  zero.  For  the
Lambert conformal conic projection, n, , and  are constant once
the standard parallels are decided:

∂x
∂φ

=  sin [n (λ − λ0)] ∂τ
∂φ

, (A17)

∂y
∂φ

= − cos [n (λ − λ0)] ∂τ
∂φ

. (A18)

Therefore,

tanγ =  −

∂x
∂φ
∂y
∂φ

= tan [n (λ − λ0)] . (A19)

tanφ/cos (λ − λ0)For UTM, by first replacing  in Equation (A15) with
M, we get

∂x
∂φ

=  −
Rk0

1 − B2
sinφsin (λ − λ0) , (A20)

∂y
∂φ

=
Rk0

1 +M2
⋅

1

cos (λ − λ0) ⋅ 1

cos2φ
, (A21)

where

1 +M2 = 1 +
tan2φ

cos2 (λ − λ0) = cos2 (λ − λ0) + tan2φ

cos2 (λ − λ0) , (A22)

1−B2 = cos2φ+sin2φ−cos2φsin2 (λ − λ0) = cos2φcos2 (λ − λ0)+sin2φ.
(A23)

γ
Substituting  Equations  (A22)  and  (A23)  into  Equations  (A21)  and
(A20),  we get the meridian convergence  of UTM after algebraic
operations:

tanγ = tan (λ − λ0) sinφ. (A24)

γ
φ

The derivation of  for the Lambert azimuthal equal area projection
is tricky. Variables x, y and K are functions of . Here, we set some
intermediate  variable  to  simplify  its  expression,  defining  the
denominator of K as

m =  1 + sinφ1sinφ + cosφ1cosφcos(λ − λ0) (A25)

and the factor of Equation (A12) as

g =  cosφ1sinφ − sinφ1cosφcos(λ − λ0). (A26)

γHence,  can be roughly written in the form of

tanγ =
sin(λ − λ0) (sinφK − cosφ ∂K

∂φ
)

g
∂K
∂φ

+ K
∂g
∂φ

=

 − sin (λ − λ0) ⋅ ∂ (cosφ ⋅ K)
∂φ

/∂ (g ⋅ K)
∂φ

,

(A27)

∂K
∂φ

= ∂K
∂m

⋅
∂m
∂φ

∂g
∂φ

γ

where  and  can easily be computed, then substi-

tuting them into Equation (A27) to get .
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