• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Reply to Comment by Lamy et al. on “Locating the source field lines of Jovian decametric radio emissions”

  • Abstract: Locating the source of decametric (DAM) radio emissions is a key step in the use of remote radio observations to understand the Jovian magnetospheric dynamics and their interaction with the planet’s moons. Wang YM et al. (2020) presented a method by which recorded arc-shaped DAM emissions in the radio dynamic spectra can be used to locate the source of a DAM. An Io-related DAM event on March 14, 2014 was used to demonstrate the method. A key parameter in the method is whether the DAM is emitted in the northern or the southern hemisphere; the hemisphere of origin can be determined definitively from the polarization of the emission. Unfortunately, polarization information for the emission on March 14, 2014 event was not recorded. Our analysis assumed the source to be in the northern hemisphere. Lamy et al. (2022) argue convincingly that the source was probably in the southern hemisphere. We appreciate the helpful contribution of Lamy et al. (2022) to this discussion and have updated our analysis, this time assuming that the DAM source was in the southern hemisphere. We also explore the sensitivity of our method to another parameter — the height at which the value of fce,max, which is the maximal electron cyclotron frequency reached along the active magnetic flux tube, is adopted. Finally, we introduce our recent statistical study of 68 DAM events, which lays a more solid basis for testing the reliability of our method, which we continue to suggest is a promising tool by which remote radio observations can be used to locate the emission source of Jovian DAMs.

     

/

返回文章
返回