• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Distribution of O+ and \textO_\text2^\text+ fluxes and their escape rates in the near-Mars magnetotail: A survey of MAVEN observations

  • Abstract: Tailward ion outflows in the Martian-induced magnetotail are known to be one of the major channels for Martian atmospheric escape. On the basis of nearly 6.5 years of observations from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we investigate the statistical distribution of tailward and Marsward fluxes of heavy ions (i.e., O+ and\rmO_2^+ ) in the near-Mars magnetotail and explore their characteristic responses to the corotating interaction region (CIR), solar wind dynamic pressure, and local magnetic field intensity. Our results show that the tailward fluxes of oxygen ions and molecular oxygen ions in the magnetotail are significantly greater than their Marsward fluxes and that the tailward flux of molecular oxygen ions is generally larger than that of oxygen ions. Furthermore, the tailward ion flux distribution exhibits dependence on the CIR, solar wind dynamic pressure, and local magnetic field strength in a manner stronger than the Marsward ion flux distribution. According to the distribution of tailward ion fluxes, we calculate the corresponding escape rates of heavy ions and show that when the CIR occurs, the total escape rates of oxygen ions and molecular oxygen ions increase by a factor of ~2 and ~1.2, respectively. We also find that the escape rates of heavy ions increase with the enhancement of solar wind dynamic pressure, whereas the overall effect of the local magnetic field is relatively weak. Our study has important implications for improved understanding of the underlying mechanisms responsible for the Martian atmospheric escape and the evolution of the Martian atmospheric climate.

     

/

返回文章
返回