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Key Points:
●  Seasonal variation characteristics of gravity waves (GWs) over Northwest China were first investigated by using the three-dimensional

spectral analysis method.
●  Gravity waves mainly propagate in the north and northeast directions in spring, summer, and autumn, and in the south direction in

winter.
●  The zonal propagation direction of GWs is controlled by the wind-filtering effect, whereas the meridional direction is mainly

determined by the location of the wave source.
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Abstract: The three-dimensional spectral analysis method was applied to airglow data from September 2023 to August 2024 derived
from an OH airglow imager located at the Hejing station (42.79°N, 83.73°E) to study the propagation characteristics of gravity waves
(GWs) over Northwest China. We found that obvious seasonal variations occur in the propagation of GWs. In spring, GWs mainly
propagate in the northeast direction. In summer and autumn, GWs mainly propagate in the north direction. However, GWs mainly
propagate in the south direction in winter. The direction of GW propagation in the zonal direction is controlled by the wind-filtering
effect, whereas the north–south meridional direction is mainly determined by the location of the wave source. We found that the average
energy spectrum exhibits a 10%–20% higher intensity in summer and winter compared with spring and autumn. For the first time, we
report the seasonal variation characteristics of GWs over the inland areas of Northwest China, which is of great significance for
understanding the regional distribution characteristics of GWs.
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1.  Introduction
Atmospheric  gravity  waves  (GWs)  are  mainly  generated  by
convection (Alexander and Holton, 2004; Li QZ et al., 2022; Nyassor
et  al.,  2022; Franco-Diaz  et  al.,  2024),  wind shear  (Pramitha  et  al.,
2015), and cold fronts (Wrasse et al., 2024) in the lower atmosphere
and  orography  (Liu  X  et  al.,  2019; Geldenhuys  et  al.,  2021).  Solar
eclipses  can  also  generate  GWs  (Gu  SY  et  al.,  2023).  When  GWs
propagate upward to the mesopause, they break up and deposit
momentum  and  energy  in  that  region.  Gravity  waves  play  an
important role in controlling the thermal and compositional struc-
tures  and  global  circulation  of  the  atmosphere  (Lindzen,  1981;
Fritts  and  Alexander,  2003; Gao  HY  et  al.,  2018; Ren  DX  et  al.,
2023).

Atmospheric GWs are widely studied by ground-based observation
equipment, such as the radiosonde (Zhang SD et al.,  2017),  radar

(Vargas et al., 2021), lidar (Ban C et al., 2015; Gong SH et al., 2015;
Xue XH et  al.,  2020),  and photometer  (Ding F  et  al.,  2004).  These
types of ground-based equipment can observe only the direction
of  the zenith.  Although satellites  can observe horizontally  in  two
dimensions,  the  time  resolution  is  limited.  The  all-sky  airglow
imaging  device  can  compensate  for  the  defects  of  imitations  of
these  devices.  When  GWs  pass  through  the  airglow  layer,  they
cause  a  disturbance  (Ghodpage  et  al.,  2016).  The  all-sky  airglow
imaging device detects this disturbance and provides two-dimen-
sional,  high-spatiotemporal  resolution GW imaging observations.
In the past, the main method for processing airglow was based on
visual  inspection (Wu Q and Killeen,  1996; Nakamura et  al.,  1999;
Ejiri  et  al.,  2003; Bageston  et  al.,  2009; Li  QZ  et  al.,  2011, 2016,
2018), which resulted in recognition errors.

Matsuda  et  al.  (2014) developed  a  spectral  analysis  method  by
converting the three-dimensional (3D) wavenumber space to the
horizontal  phase  velocity  space,  resulting  in  a  powerful  spectral
analysis tool for performing efficient statistical analysis of massive
airglow images. This method can provide not only the propagation
direction  and  horizontal  phase  velocity  distribution  of  GWs,  but
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also the energy spectrum information.  Recently,  this  method has
been  used  for  statistical  research  on  GWs  (Takeo  et  al.,  2017;
Tsuchiya et al., 2018; Kogure et al., 2023).

The terrain conditions in the inland areas of Northwest China are
complex and unique, with deserts and high mountains. However,
this area is considered the farthest from the coast, and the charac-
teristics of GWs over this area have not been studied. In this study,
we report for the first time the characteristics of GWs for this area
by using the 3D spectral analysis method. 

2.  Observation and Method 

2.1  Airglow Imager
Two sets of airglow imagers were operated at the Hejing station,
Xinjiang,  in  August  2023. Figure  1 shows  the  location  of  the
Hejing  station  (42.79°N,  83.73°E).  These  imagers  are  part  of  the
Passive  Optical  Observation  System  for  the  Chinese  Meridian
Project  Phase  II  Programme  (Wang  C  et  al.,  2020).  Every  imager
consists of a fish-eye lens (Focal length of 16 mm and aperture of
f/4.0) with a field of view (FOV) of 180° and a cooled-CCD camera
with  a  resolution  of  1024  ×  1024  pixels.  The  OH  near-infrared
band  filter,  which  spans  from  715  to  930  nm,  features  a  notch
centered at 865 ± 9 nm to block the O₂ (0, 1) emission line. In this
study,  we  used  images  of  the  OH  airglow  emission  with  typical
emission heights of ~87 km. The exposure time was set to 60 s for
the OH image. 

2.2  Analysis Method

ΔI

Figure  2a shows  a  raw  OH  airglow  image  obtained  at  Hejing  at
13:52:46 universal time (UT) on January 2, 2024. First, we applied a
median  filter  with  a  window  size  of  15  ×  15  pixels  to  the  raw
images to remove stars. Second, we removed the dark counts and
offset values of the CCD, which were estimated in the areas near
the four corners of the raw images outside the FOV. We assumed
that  the  dark  count  was  uniform  over  the  CCD  array.  We  then
calculated the normalized perturbation of the airglow intensity ,

ΔI = I − I

I
, (1)

I Iwhere  is the airglow intensity and  is the airglow intensity aver-
aged over a ±30 min window. Third,  we projected the processed
images  onto  geographic  coordinates  with  an  area  of  800  ×  800
km, assuming a peak emission height of  87 km. Figure 2b shows
the projected image from Figure 2a.

k l ω
vx vy ω

Next,  we  calculated  spectra  of  the  zonal  and  meridional
wavenumber and frequency by applying the 3D fast Fourier trans-
form (FFT). Figure 2c shows the wavenumber spectrum of the OH
images at Hejing from 13:34:07 to 14:04:01 UT on January 2, 2024.
The  wavenumber  spectral  domains  ( , , )  were  converted  to
horizontal  phase  velocity  domains  ( , , )  by  using  Equations
(2) and (3) (Matsuda et al., 2014):

vx =
ωk

k2 + l2
, (2)

vy =
ωl

k2 + l2
, (3)

where k is  the  zonal  wave  number,  and l is  the  meridional  wave
number,  respectively, ω is  the  frequency, vx and vy are  the  zonal
and  meridional  components  of  the  horizontal  phase  velocity,
respectively.  The  volume  element  conversion  between  the
wavenumber  spectral  space  and  the  horizontal  phase  velocity
space is given by Equations (4) and (5):

dvxdvydω = JJJ ⋅ dkdldω, (4)

JJJ =

»»»»»»»»»»»»»»»»»»»»»»

∂vx
∂k

∂vx
∂l

∂vx
∂ω

∂vy
∂k

∂vy
∂l

∂vy
∂ω

0 0 1

»»»»»»»»»»»»»»»»»»»»»»
. (5)

Figure 2d shows the phase velocity spectrum converted from the
wavenumber  spectrum  shown  in Figure  2c.  The  phase  velocity
spectrum  is  distributed  in  the  south  and  southwest  directions
(180°–225° clockwise from the north) with a peak of  60–100 m/s,
which indicates that the main waves observed by the imager were
south- and southwest-propagating waves with phase velocities of
20–90  m/s  during  the  period  of  13:34:07  to  14:04:01  UT  on
January 2, 2024. 

3.  Results and Discussion 

3.1  Seasonal Variations of the Horizontal Phase Velocity
Spectrum

In this study, the OH airglow data used for statistical analysis were
obtained from the Hejing station during the period from Septem-
ber  2023  to  August  2024.  We  defined  spring  as  March  to  April
(2  months),  summer  as  May  to  August  (4  months),  autumn  as
September  to  October  (2  months),  and  winter  as  November  to
February  (4  months). Table  1 shows  the  seasonal  distribution  of
clear observation times and the number of GW events. The clear-
sky  duration  in  Hejing  is  significantly  longer  in  winter  than  in
other  seasons,  as  the  other  seasons  are  often  characterized  by
cloudy and rainy weather. Therefore, the statistical analysis results
of GWs in winter are more reliable than those in other seasons.

Figure  3 shows  seasonal  horizontal  phase  velocity  spectra  of
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Figure 1.   Location of the airglow imager station. The circle on the

map gives the effective observation ranges of the OH airglow imager

with a diameter of approximately 800 km. The background shows a

map of the topography elevation from GTOPO30 (global digital

elevation model with a horizontal grid spacing of 30 arc seconds).
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mesospheric  GWs seen in  the OH images  obtained at  the  Hejing

station. The power spectral density (PSD) represents the power of

GWs. The low-velocity region (0 to 20 m/s) is  not shown because

of  white  noise  contamination  of  the  airglow  images.  The  PSD  of

horizontal phase velocity spectra for each season comes from the

average of the selected time window. Obvious seasonal variation

characteristics  can  be  seen.  The  phase  velocity  spectrum  is

distributed  in  the  north  and  northeast  directions  with  phase

velocities  of  40–70  m/s  in  spring  and  northeastward  with  phase

velocities of 30–100 m/s in summer. In autumn, the phase velocity

spectrum is distributed in the northwest and northeast directions

with  phase  velocities  of  30–90  m/s.  In  winter,  the  phase  velocity

spectrum is distributed in the south and southeast directions with

phase velocities of 40–110 m/s.

Figure  4 shows  the  average  energy  spectrum  distribution  with

seasonal  variation.  We  found  that  the  average  energy  spectral
intensity in summer and winter was higher than that in spring and
autumn, with the highest in winter. This may be due to the active
meteorological  activity  in  the  lower  atmosphere  during  summer
and winter. 

3.2  Possible Mechanisms That Affect the Anisotropy of

Wave Propagation
The  convective  system  is  the  main  source  of  GWs.  We  used  the
vertical fluid motion values provided by ERA5 (ECMWF Reanalysis
v5; Hersbach  et  al.,  2020),  European  Centre  for  Medium-Range
Weather  Forecasts  (ECMWF),  to  study  the  strength  of  convective
activity,  where  a  negative  pressure  vertical  velocity  (upward
motion)  indicates  relatively  strong  convective  activity. Figure  5
shows seasonal averages of the tropospheric vertical flow velocity.
Regions of strong upward velocities from the southwest direction

 

Table 1.   The seasonal distribution of clear observation times and number of GW events.

Spring Summer Autumn Winter Total

Total of clear observation times (h) 112 278 172 624 1186

Number of GW events 23 67 42 143 275
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Figure 2.   (a) A raw OH airglow image obtained at Hejing at 13:52:46 UT on January 2, 2024. (b) The processed image was projected to 800 ×

800 km in geographic coordinates with northward to the top and eastward to the right. (c) The wavenumber spectrum of the OH images at

Hejing at 13:34:07–14:04:01 UT on January 2, 2024. (d) The phase velocity spectrum (integrated over the frequency domain), converted from the

wavenumber spectrum shown in (c).
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can  be  seen  in  spring,  summer,  and  autumn.  In  autumn,  strong

convective activity appears over the Qinghai–Tibet Plateau south-

east of the station. In winter, a region of strong vertical velocities

appears  north  of  the  Hejing  station.  The  GWs  generated  in  this

area will contribute to the southern propagation of GWs observed

over  the  Hejing  station.  Therefore,  the  distribution  of  convective

systems  in  different  regions  of  the  troposphere  can  explain  the

differences  in  the  north–south  propagation  directions  of  GWs

observed by the OH airglow imager.
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Figure 3.   The seasonal horizontal phase velocity spectra of mesospheric GWs seen in OH images obtained at the Hejing station. The black circles

represent blocking diagrams of the forbidden GW propagation region caused by wind filtering.
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Figure 4.   Average energy spectrum distribution with seasonal variation.
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Regarding the difference in the direction of propagation between

the  east  and  the  west,  the  filtering  effect  of  the  wind  field  may

have played an important role. The dispersion relationship of GWs

(Hines, 1960) is given by

m2 = N2(c − u)2 − kh −
1

4H2
, (6)

m kh
c u

N
H

m

where  and  are vertical and horizontal wavenumbers, respec-

tively;  is the horizontal observed phase speed of the GW;  is the

background  wind  speed  in  the  wave  propagation  direction;  is

the Brunt–Väisälä frequency; and  is the scale height. According

to Equation (6),  if  the GW propagation speed is  close to or  equal

to the horizontal wind speed in the wave propagation, the vertical

wave  number  will  become  infinite,  which  means  that  when

encountering  a  critical  layer,  GWs  will  not  be  able  to  propagate

upward.

A blocking diagram is used to represent the velocity distribution,

and  the  GWs  in  this  distribution  area  cannot  propagate  to  a

specific  height  because  of  the  critical  layer  filtering  effect.  The

blocking diagram is generated by the following equation:

c = Vzcosφ + Vmsinφ, (7)

Vz Vmwhere  and  are  the  zonal  and  meridional  wind  speed,

φrespectively, and  is the azimuth (anticlockwise from the east) of
the horizontal propagation direction.

Because  of  the  lack  of  simultaneous  wind  field  observations,  the
wind  field  in  the  altitude  range  of  0  to  80  km  comes  from  ERA5,
and the wind field in the range of  80 to 87 km comes from hori-
zontal wind model-14 (HWM14; Drob et al., 2015). Figure 6a shows
a  3D  blocking  diagram  (Taylor  et  al.,  1993)  from  0  to  87  km  on
January  2,  2024. Figure  6b shows  the  2D  blocking  diagram  from
Figure 6a. Two-dimensional blocking diagrams are superimposed
on the horizontal  velocity spectrum in Figure 3.  From Figure 3,  it
can be seen that almost no GW spectrum is present in the blocking
diagram area, which is quite consistent with the critical layer filter-
ing theory.

Gravity waves generated in the lower atmosphere in this forbidden
region will be filtered out and cannot be observed by the airglow
imager. However, GWs generated through secondary waves in the
stratosphere  may  not  be  filtered  out  by  wind  fields.  Another
scenario exists in which GWs can propagate thousands of kilome-
ters through ducts (Xu JY et al., 2015; Li QZ et al., 2024). Therefore,
some GWs within the forbidden region probably did not originate
from altitudes below the OH airglow layer, but from a location far
away from the station by using ducts distributed at the height of
the mesopause region.
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Figure 5.   Seasonal averages of the tropospheric vertical flow velocity. These plots were obtained by averaging the upward flow data at 400 hPa

(∼7 km altitude) obtained by the ERA5, European Center for Medium-Range Forecasts, over the nights when we calculated the airglow spectra

shown in Figure 3. The circle in each panel gives the effective observation ranges of the OH airglow imager with a diameter of approximately

800 km.
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From the aforementioned analysis,  we found that the convective
systems  and  wind-field  filtering  control  the  seasonal  variation
characteristics  of  GW  propagation  above  the  Hejing  station.
Another  factor  that  cannot  be  ignored is  the  topographic  condi-
tion.  The  Hejing  station  is  located  in  the  Tianshan  Mountains.
Here,  the  terrain  can  generate  stationary  mountain  waves.
However, the mountain waves generated by the Tianshan Moun-
tains  can  be  broken  in  the  stratospheric  region  to  produce
secondary waves, which are also an important source of GWs (Liu
X  et  al.,  2019).  In  future  work,  we  will  focus  on  the  impact  of
mountain waves in the Tianshan region on the middle and upper
atmosphere. 

4.  Conclusions
We analyzed the propagation characteristics of GWs by using the
3D  spectral  analysis  method  for  OH  all-sky  airglow  imager  data
obtained  from  the  Hejing  station.  We  provide,  for  the  first  time,
the  seasonal  variation  characteristics  of  GWs  over  the  region  of
Northwest China.

We found obvious seasonal variations in the propagation of GWs.
Gravity  waves  mainly  propagate  in  the  southern  direction  in
winter; however, they mainly propagate in the northern direction
in spring,  summer,  and autumn. The zonal  propagation direction
of  GWs  is  controlled  by  the  wind-filtering  effect,  whereas  the
meridional  direction  is  mainly  determined  by  the  location  of  the
wave source. We also found that the mean energy spectral intensity
during  summer  and  winter  is  approximately  10%–20%  greater
than that in spring and autumn. This study is of great significance
for understanding the distribution characteristics of GWs over the
inland areas of Northwest China. 
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