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Key Points:
●  Several tomographic models reveal two broad low-velocity anomalies beneath Canaries (CEAA) and Central Europe (ECRA) connected

near the base of the mantle.
●  CEAA and ECRA are interpreted as two broad plumes rising from the top of the African LLSVP.
●  The interaction of the ECRA material with the cold Alpine subducted slab hinders the vertical rise of the upwellings in the upper

mantle.
●  Deep-mantle plumes may play a role in the evolution of the European Cenozoic rift system and associated volcanism.
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Abstract: A wide northeast-trending belt of intraplate alkaline volcanism, exhibiting similar geochemical characteristics, stretches from
the Eastern Atlantic Ocean to the Cenozoic rift system in Europe. Its formation is associated with both passive and active mechanisms, but
it remains a source of ongoing debate among geoscientists. Here, we show that seismic whole-mantle tomography models consistently
identify two extensive low-velocity anomalies beneath the Canary Islands (CEAA) and Western-Central Europe (ECRA) at mid-mantle
depths, merging near the core-mantle boundary. These low-velocity features are interpreted as two connected broad plumes originating
from the top of the African LLSVP, likely feeding diapir-like upwellings in the upper mantle. The CEAA rises vertically, whereas the ECRA is
tilted and dissipates at mantle transition zone depths, possibly due to the interaction with the cold Alpine subducted slab, which hinders
its continuity at shallower depths. While plate-boundary forces are considered the primary drivers of rifting, the hypothesis that deep
mantle plumes play a role in generating volcanic activity provides a compelling explanation for the European rift-related alkaline
volcanism, supported by geological, geophysical, and geochemical evidence.
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1.  Introduction
Continental  rift  systems are often linked to volcanism, with litho-

spheric extension during rifting considered a key factor in magma

formation (Sengör and Burke, 1978).  In the past,  a net distinction

was  made  between  active  and  passive  rifting.  Active  rifts  are

thought to be driven by a hot mantle upwelling while passive rifts

develop  in  response  to  lithospheric  thinning  due  to  far-field

stresses  (McKenzie  and  Bickle,  1988; Wilson,  1992; Ziegler  and

Cloetingh, 2004). However, many continental rifts exhibit a combi-

nation of both mechanisms, thereby challenging this binary classi-

fication (Ruppel, 1995; Huismans et al.,  2001; Merle, 2011; Koptev

et al., 2021).

The European Cenozoic Rift System (or ‘ECRIS’) is one of the most

extensively studied continental rifts,  but the origin of its magma-

tism—whether from active mantle plumes, passive mantle ascent,

or  a  combination  of  both  mechanisms—remains  controversial

(Wilson  and  Downes,  1991; Wedepohl,  2000; Ziegler  and  Dèzes,

2005; Luijendijk  et  al.,  2011; Mouthereau  et  al.,  2021).  The  ECRIS

extends  from the  North  Sea  coast  to  the  Western  Mediterranean

and it  finds its  southern prolongation in south−east Iberia where

younger,  Quaternary  products  outcrop  (Ziegler,  1992)  (Figure  1).

The graben structures of the rift include the Valencia Trough and

the Olot Graben in the Iberian Peninsula, the Gulf of Lion, Saône,

Limagne,  and  Bresse  Grabens  in  southeastern  France,  the  Rhine,

Ruhr  Valley,  and  Leine  Grabens  in  Central  Europe,  and  the  Eger

Graben  in  the  Bohemian  Massif.  The  rift  evolved  in  the  Alpine

foreland  from  the  late  Eocene  to  recent  times,  coinciding  with

major Alpine orogenic phases (Figure 1). Around 30 Ma, slab roll-

back-induced  extension  in  the  Western  Mediterranean  opened

the  Gulf  of  Lion  and  Valencia  Trough,  followed  by  the  Liguro-

Provençal, Alboran Sea, and Tyrrhenian basins (Comas et al., 1992;

Lonergan and White, 1997; Jolivet et al., 1999).

Two  distinct  magmatic  phases  occurred  in  this  geodynamic

setting:  (i)  an  orogenic-related  phase  with  intrusive,  subvolcanic,

and  volcanic  rocks  (from  calc-alkaline  to  high  K  alkaline),  and  (ii)
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an  anorogenic  phase,  related  to  intraplate  volcanics  (mainly  Na-

alkaline) (Wilson and Downes, 1991; Harangi et al.,  2006; Lustrino

and Wilson, 2007) (Figure 1b). The latter phase encompasses both

hotspot-driven  and  graben-associated  volcanic  pulses  extending

spatially from the Canary Islands and North Africa—along the so-

called  Moroccan  Hot  Line  (Frizon  de  Lamotte  et  al.,  2009)—

towards the ECRIS area. Major European alkaline volcanic centers

are  located  in  uplifted  areas  across  Iberia  (e.g.,  at  Calatrava,

Cofrentes,  Picassent,  and  Olot),  the  Valencia  Trough,  the  Massif

Central, the Rhenish Massif, the Rhine Graben, and the Bohemian

Massif  (see Figure  1),  with  peak  activity  during  the  Oligocene/

Miocene  and  limited  Quaternary  activity.  Very  sparse  volcanic

manifestations occurred in the Paleocene at a pre-rift stage, likely

resulting from lithospheric flexure due to early Alpine compression

(Michon and Merle,  2001).  Other volcanic areas,  both anorogenic

(e.g.,  Northern Italy and the Balaton region) and orogenic-related

(e.g., Central-Southern Italy and the Pannonian Basin), also exist in

the surrounding areas (Figure 1b). Although these rocks may have

originated  from  the  same  source,  they  are  not  discussed  in  the

text.

Overall,  high  surface  heat-flow  values  are  observed  in  the  ECRIS

and along the Hot Moroccan Line, with peaks of ~90 mW m−2 and

above in Central and Western Europe (see zones 2−6 in Figure 2).
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Figure 1.   (a) Map of the study region showing the topography and major tectonic structures. Brown lines with ticks denote the main orogenic

frontal zones, and the black, thin lines indicate the crustal faults. (b) Volcanism (green: anorogenic-related volcanic rocks; pink: orogenic-related

rocks) and schematic rifting features: VT–Valencia Tough, OG–Olot Graben, GL–Graben of the Gulf of Lion, LG–Limagne Graben, BG–Bresse

Graben, RG–Rhine Graben, RhG–Rhur Graben, LeG–Leine Graben, EG–Eger Graben. The yellow area indicates the spatial extent of the Cenozoic

magmatism, including the ECRIS and the Moroccan Hot Line. Inset: the location of the study region is indicated with a red box. (c) Age of the

igneous alkaline fields (numbered 1−10) plotted in panel B, along with localized uplift and extension from the Bohemian Massif in the northeast

to the Canary Islands in the southwest.
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The  correlation  between  heat-flow  trends  and  the  regions  of
weak,  thin  lithosphere  (around  80  km  thick)  suggests  that  active
mantle upwelling beneath Europe may contribute to the alkaline
volcanism in areas with extended lithosphere (Goes et al.,  2000a,
b). This active scenario has been proposed as an additional mech-
anism,  rather  than  an  alternative  to  post-collisional  passive
processes, in weakening the lithosphere and controlling the level
of rift-related volcanic activity (Ziegler and Cloetingh, 2004).

Tomographic  models  (e.g., Spakman  et  al.,  1993; Granet  et  al.,
1995; Ritter  et  al.,  2001; Plomerová  et  al.,  2007; Koulakov  et  al.,
2009; Fichtner  and  Villaseñor,  2015; Zhu  HJ  et  al.,  2015)  reveal
localized  sub-vertical  upper-mantle  low-velocity  anomalies
beneath  the  Massif  Central,  Rhenish  Massif,  Rhine  Graben,  and
Bohemian  Massif.  Some  authors  (Granet  et  al.,  1995; Goes  et  al.,
1999; Ritter  et  al.,  2001)  interpret  these  features  as  small-scale
plumes (“baby plumes”), possibly fed by a deeper mantle root.

Geochemical  studies  find  that  the  isotope  composition  of  the
Cenozoic  volcanic  rocks  of  the  Eastern  Atlantic  and  Western-
Central European domains is relatively uniform, and distinct from
the mantle source for MORB supporting the hypothesis of a single
lower-mantle  origin  from  a  well-mixed  reservoir  (Hoernle  et  al.,
1995; Haase et al., 2004; Buikin et al., 2005). In contrast, the petro-
genetic  analysis  of Lustrino  and  Wilson  (2007) suggests  that  all
anorogenic  magmatic  events  originate  from  an  asthenospheric
source displaying HIMU isotopic signatures and local lithospheric
contamination,  without  requiring  a  deep  mantle  root.  Given  the
complexity  of  the  Eurasian−African  plate  collision  and  the  chal-
lenges in imaging the lower mantle,  the idea that a deep mantle
plume  triggers  asthenosphere-derived  partial  melting  remains

highly debated.

This  study  explores  deep  mantle  structure  beneath  Europe  by
analyzing  a  global-scale  full-waveform  inversion  tomography
model  recently  published  by Thrastarson  et  al.  (2024).  Addition-
ally,  we  apply  a ‘voting’ process  to  identify  common  large-scale
features—such as size, shape, and position—across various seismic
tomography  models.  The  consistent  observation  of  two  low-
velocity  mantle  anomalies  beneath  the  Eastern  Atlantic  and
Central  Europe,  converging  near  the  core-mantle  boundary,
suggests that the ECRIS and Canary Islands may share a common
source of plume-like volcanism. 

2.  Mantle Plumes Imaged by Seismic Tomographic
Models

Seismic tomography is a powerful geophysical tool used to image
the  Earth’s  interior  by  analyzing  the  travel  times  and  amplitudes
of seismic waves. However, tomographic models differ in the seis-
mological  measurements,  methods,  and  inversion  schemes  that
vary  in  wave  propagation  approximations,  model  parameteriza-
tion,  and regularization choices,  and the range of  seismic phases
used (e.g., Masters et al., 1982; van der Hilst et al., 1997; Rawlinson
and Sambridge, 2004; Boschi et al., 2007; Liu Q and Gu YJ, 2012).

The newly developed “REVEAL” model by Thrastarson et al. (2024)
offers an up-to-date approach to imaging the Earth’s mantle using
a transversely isotropic full-waveform inversion and incorporating
both surface and body wave data. Figure 3 presents depth slices
from  this  model  of  the  mantle  (600−2700  km  depth)  beneath
Europe, providing fresh insights into the deep velocity structures.
The  slices  show  a  broad  low-velocity  anomaly  centered  beneath
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Figure 2.   (a) Lithosphere−asthenosphere boundary (LAB) depth map based on the G-WINTERC model of Fullea et al. (2021). The lithosphere is

relatively thin (~80 km depth) in the ECRIS and along the Hot Moroccan Line, whereas in adjacent regions, including the East European and West

African Cratons, the LAB is deeper, reaching depths greater than 200 km. The dashed curve contours the region with Cenozoic magmatism. (b)

Two profiles cutting the Hot Moroccan Line (a−a’) and the ECRIS (a’−a’’). (c) Map of heat flow measurement points (Fuchs et al., 2021). Inset: the

average heat flow values for the regions (black boxes) numbered 1−10 in Figure 1. Note that most of the regions of volcanism correspond to

areas of high heat flux.
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the  Canary  Islands,  already  identified  as  the  Central-East  Atlantic

Anomaly (CEAA) in Civiero et al. (2021, 2023), which extends down

to  the  core-mantle  boundary.  At  shallower  lower-mantle  depths

(~1200−1800 km), the CEAA persists beneath the western Canary

Islands and another large semi-circular low-velocity anomaly with

a  diameter  of  ~1000  km  appears  below  the  ECRIS  in  Central

Europe. The extension of this second body—that we name Euro-

pean  Cenozoic  Rift  Anomaly  (ECRA)—is  shown  in Figure  4

through two cross-sections oriented in different  directions.  ECRA

appears  to  be  connected  to  the  CEAA  in  the  lowermost  mantle

and  slightly  tilted  towards  the  northeast.  Another  interesting

feature in the model is a continuous, elongated low-velocity struc-

ture  observed  in  the  upper  mantle  at  ~150  km  depth  extending

from the Canary Islands to Western Europe and the Mediterranean

Sea.

To complement our tomographic analysis,  we identify consistent

mantle  structures  in “vote  maps”,  which  facilitate  a  direct  and

clear comparison of multiple models at various depths, providing

a comprehensive view of  the mantle’s  large-scale features across

different  datasets  (Shephard  et  al.,  2017, 2021).  Using  this

approach,  regions  with  seismic  velocity  anomalies  lower  (or

higher)  than  the  mean  of  the  negative  (or  positive)  values  are

 

−20° −10° 0° 10° 20°

900 km

50°

−20°

40°

−10°

30°

0° 10° 20°

600 km

1500 km

ECRA

CEAA

50°

40°

30°

1200 km

2100 km

50°

40°

30°

1800 km

2700 km
LLSVP

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

50°

40°

30°

2400 km

Vsv perturbation (%)
 
Figure 3.   Vsv variations from the average wave speed at different depth slices, as imaged by the REVEAL model (Thrastarson et al., 2024). The two

green stars in the 1500 km depth slice mark the approximate centers of the CEAA and ECRA low-velocity anomalies. In the 2700 km depth slice,

the thick brown line outlines the margins of the African Large Low Shear Velocity Province (LLSVP) as inferred from the tomography model of

Simmons et al. (2012).
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assigned a value of one, while the remaining regions are assigned

a  value  of  zero.  Maps  for  selected  tomographic  models  are  then

summed  at  a  given  depth  (Shephard  et  al.,  2017).  The  resulting

vote  maps  represent  the  number  of  selected  models  that  agree

on robust structures and do not introduce new features absent in

the  original  tomographic  models.  Higher  vote  counts  highlight

features  common  across  multiple  models,  whereas  lower  counts

show features present in fewer models. It is important to note that

low vote counts do not imply that the features do not exist.

Vote  analyses  have  limitations,  as  the  tomographic  models  used

for  vote  analysis  differ  significantly  in  their  construction  and

resolving power. These differences include: (i) reliance on either S

or P waves;  (ii)  the use of different 1-D reference models,  seismic

sources,  seismograms,  and  phase-picking  techniques;  and  (iii)

variations  in  inversion  domain  decompositions,  methodologies,

and  parameterizations  (Cottaar  and  Lekic,  2016; Shephard  et  al.,

2017; Marignier  et  al.,  2020).  Moreover,  vote  images  are  only  as

robust as the tomographic models they are based on. The varying

degrees of data overlap and parameterization introduce biases, as

the  votes  are  not  fully  independent.  Despite  these  limitations  in

combining  the  information  from  multiple  tomography  models,

vote  images  remain  a  useful  tool  for  identifying  common  large-

scale  features—such  as  size,  geometry,  and  position—in  tomog-

raphy.

The  vote  maps  are  generated  from  the  SubMachine  website

(https://users.earth.ox.ac.uk/~smachine, Hosseini  et  al.,  2018),

focusing  on  a  set  of  six  whole-mantle  S-wave  tomographic

models  (Figure  5).  We  select  deviations  from  the  mean  for  low-

velocity  anomalies  for  the  following  models:  GyPuM-S  (Simmons

et  al.,  2010),  S362ANI+M  (Moulik  and  Ekström,  2014),  S40RTS

(Ritsema  et  al.,  2011),  Savani  (Auer  et  al.,  2014),  SEMUCB-WM1

(French  and  Romanowicz,  2014),  and  SPani-S  (Tesoniero  et  al.,

2015).  In  this  analysis,  the  vote  maps  indicate  agreement  across

models about the presence of slow seismic large-scale anomalies

(which  are  interpreted  as  large-scale  plumes)  in  a  depth  range

that  captures  the  mantle  transition  zone  (MTZ)  and  the  lower

mantle.

To highlight robust high-velocity structures, commonly interpreted

as  subducted  lithosphere,  we  also  include  in  the  Supplementary

Figure S1 high-velocity vote maps compiled from the following six

global P-wave models: DETOX-P3 (Hosseini et al., 2020), GyPSuM-

P  (Simmons  et  al.,  2010),  LLNL_G3Dv3  (Simmons  et  al.,  2012),

SPani-P  (Tesoniero  et  al.,  2015),  UU-P07  (Amaru,  2007),  and

TX2019slab-P  (Lu  C  et  al.,  2019).  The  key  characteristics  of  each

model (i.e. data type, seismic phases employed, and native model

parametrization) are summarized in Supplementary Table T1.

The vote analysis reinforces the robustness and consistency of the

observations  across  various  tomographic  datasets.  The  overall

pattern of the seismically slow regions shown in Figure 5 highlights

the agreement across tomographic models on the extent of both

CEAA  and  ECRA,  as  imaged  independently  by  REVEAL.  Cross-

sections  AA’ and  BB’ indicate  that  ECRA  connects  with  CEAA

through  a  thick  (~800  km)  low-velocity  layer  near  the  bottom  of

the lower mantle. Also, according to Figure S1, we observe a wide

high-velocity anomaly within the MTZ encompassing most of the

Euro-Mediterranean  region,  and  in  particular  the  area  interested

by the Alpine orogeny. It has been suggested that this high-velocity

material could be the remnant of the Tethyan oceanic lithosphere

stagnating  in  the  MTZ  below  Europe  (Marquering  and  Snieder,
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Figure 4.   Two cross-sections of the REVEAL model (Thrastarson et al.,

2024) showing the CEAA and ECRA low-velocity anomalies from

different orientations. Cross-section A−A’ illustrates that the CEAA

extends vertically from the core-mantle boundary (CMB) upward,

while the ECRA appears connected to it but slightly tilted. Cross-

section B−B’, cutting across North-Central Europe, highlights the

continuity of the low-velocity anomaly up to mantle transition zone

depths. The map view at 150 km depth shows relative Vsv variations

from the average wave speed at that depth level. Plate boundaries are

displayed as green lines, and rifting features (as in Figure 1) are

indicated in white.
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1996; Piromallo and Morelli, 2003).

In Figure  S2,  we  present  the  map  views  at  the  same  depths  as
those in Figure 5 but using a less strict zero threshold metric (dv/v
<  0).  As  expected,  also  for  this  threshold,  the  standout  regions
where  the  models  highly  agree  on  the  presence  of  slow  seismic

anomalies are larger than those identified using the ‘mean’ metric.

We also compute the resulting average model at the same depths

obtained through SubMachine normalizing the average amplitudes

of  the  six  S-wave  models  GyPuM-S,  S362ANI+M,  S40RTS,  Savani,

SEMUCB-WM1, and SPani-S (Figure S3). In these images, CEAA and
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Figure 5.   Top four rows: Low-velocity vote maps of the whole mantle based on six S-wave tomographic models (dv/v < mean). These maps are

obtained by the joint analysis of S-wave models available in the SubMachine tomography repository (https://users.earth.ox.ac.uk/~smachine). The

vote maps confirm the presence of a broad low-velocity anomaly centered below the Canary Islands (CEAA) through the lower mantle, which

may indicate the deep mantle source of the hotspot volcanism. Another low-velocity feature below Central-East Europe (ECRA) underlies the

ECRIS and associated volcanism and is likely to be its deep root. Fifth row: Vote cross-sections through the Canary Islands and Western-Central

Europe. The orientations of the cross-sections are plotted in the inset panels on the bottom right. Note that both CEAA and ECRA appear as

broad, deep-seated low-velocity anomalies extending through the lower mantle and merging near the core-mantle boundary. Bottom row:
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shading highlights the spatial distribution of the Cenozoic magmatism. The gray areas correspond to the reconstructed positions of tectonic

plates at each time step.
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ECRA are two distinct features at mid-mantle depths and merge at
~2400 km depth confirming the existence of two broad anomalies
extending up from a unique root. The vertical profiles of the seismic
perturbation right below CEAA and ECRA (Figure S4) indicate that
the  low-velocity  layer  is  continuous  in  the  lowermost  mantle
beneath  the  Canary  Islands  and  Western  Europe,  but  disappears
below Central Europe. This trend suggests that the common root
zone is located offshore in the Central-East Atlantic.

The  hot  layer  falls  within  the  borders  of  the  African  Large  Low-
Shear-Velocity  Province  (LLSVP)  in  the  lowermost  mantle.  The
LLSVP  stretches  in  the  north−south  direction  from  the  Northern
Atlantic  Ocean to  the  Southwest  Indian Ocean (Ni  SD and Helm-
berger,  2003)  and  has  been  proposed  to  have  been  relatively
stable  during  the  last  300  Ma  due  to  its  thermo-chemical  nature
(Torsvik et al., 2014). Assuming the LLSVP has remained stationary,
we use GPlates (Müller et al., 2018) to reconstruct the past locations
of  Cenozoic  volcanism  relative  to  it,  from  the  Cenozoic  to  the
present  (Figure  5,  bottom  row).  Note  that  rather  than  displaying
individual  volcanic  fields,  we  represent  the  reconstructed  paleo-
position  of  Cenozoic  volcanism  as  an  area  encompassing  all
volcanic  fields.  This  region,  bounded  by  the  two  instabilities
(CEAA and ECRA), consistently extends into or near the margins of
the LLSVP in the lower mantle from at least 60 Ma to the present. 

3.  Discussion
The formation of the ECRIS remains a subject of great debate (e.g.,
Sengör, 1976; Ziegler, 1982; Michon et al., 2003; Dèzes et al., 2004;
Bourgeois  et  al.,  2007; Luijendijk  et  al.,  2011; Mouthereau  et  al.,
2021). Distinct models have been proposed to find a single plate-
scale mechanism that can explain the Cenozoic rift-related volcan-
ism  ranging  from  active  rifting  driven  by  one  large  or  multiple
plumes (Granet et al., 1995; Oyarzun et al., 1997; Goes et al., 1999;
Ritter  et  al.,  2001)  to  passive  rifting possibly  induced by foreland
splitting due to the Alpine compression (Sengör, 1976; Dewey and
Windley, 1988; Dèzes et al.,  2004; Ziegler and Dèzes,  2005),  back-
arc  extension  (Jowett,  1991)  or  slab-pull  forces  (Stampfli  et  al.,
1998; Michon and Merle, 2001; Michon et al., 2003).

Seismic  tomography  images  asthenospheric  P- and  S-wave  low-
velocity  anomalies  under  Western-Central  Europe  (Granet  et  al.,
1995; Bijwaard  et  al.,  1998; Goes  et  al.,  1999; Ritter  et  al.,  2001;
Koulakov et  al.,  2009),  which require the presence of  partial  melt
to be compatible with the observed high surface heat flow (Figure
2).  Development of  these anomalies  during the Paleocene,  inter-
preted  as “baby  plumes”,  was  associated  with  an  increase  in  the
potential temperature of the asthenosphere (Goes et al., 2000a, b)
that, in turn, caused thermal weakening of the foreland lithosphere
and localization of the magmatic activity in the ECRIS area.

Here, we provide seismic evidence of the existence of a large low-
velocity  anomaly,  referred  to  as  ECRA,  in  the  mid-mantle  below
the  European  continent  (Figures  3−5).  The  consistency  of  the
tomography  images,  combined  with  paleo-reconstruction  inter-
pretations,  suggests that ECRA is a broad-scale,  long-lived plume
that supplies heat and possibly hot material for the upper-mantle
upwellings.  The ages of  ECRIS volcanism indicate that  the plume
predates  the  complete  development  of  subduction  in  the
Mediterranean (Figure 1). Consequently, in the upper mantle, the

ECRA material may have been gradually displaced by the subduc-
tion of the cold slab allowing weaker “baby plumes” to impinge at
the  base  of  the  lithosphere  in  the  surrounding  areas  and  trigger
localized  volcanic  activity.  Regional  uplift  above  the  massifs
(Dèzes  et  al.,  2004; Van  Camp  et  al.,  2011; Kreemer  et  al.,  2020)
may  be  the  result  of  stresses  induced  by  the  relatively  hot  and
buoyant  mantle  at  the  bottom  of  the  lithosphere  under  the
volcanic fields. Additionally,  local extension due to passive forces
could have facilitated the ascent of plume material and the gener-
ation  of  small-scale  volcanism  in  other  regions.  In  this  scenario,
the  age  of  the  alkaline  volcanism  is  determined  by  the  tectonic
regime, rather than the plume itself.

In  the  lowermost  mantle,  ECRA  is  connected  to  the  dome-like
structure  beneath  the  Canary  Islands  (CEAA)  via  a  hot,  ~800-km-
high layer that is part of the LLSVP, with CEAA extending upward
into  the  upper  mantle.  Regional  tomography  models  show  that
this instability, interpreted as another broad plume, stalls beneath
the MTZ and generates diapiric upper-mantle plumelets beneath
the  Canary  and  Madeira  hotspot  provinces  (Civiero  et  al.,  2018,
2019). The plume origin is also supported by a recent shear-wave
splitting  analysis  (Schlaphorst  et  al.,  2022),  which  shows  a  radial
and  heterogeneous  anisotropy  different  from  the  regional
pattern.  Receiver  functions  find  a  thin  MTZ  (~220−230  km),  the
presence of an X discontinuity, and a high basalt fraction (Bonatto
et al., 2024) providing additional compelling evidence for a deep-
seated thermochemical  plume that crosses the MTZ beneath the
Canaries.

It  has  also  been  suggested  that  the  hot  material  fueling  the
volcanism along the Hot Moroccan Line and ECRIS originates from
a  plume  centered  beneath  the  Canary  Islands  and  channeled  at
sub-lithospheric  depths toward western North Africa and Europe
(Hoernle  et  al.,  1995; Piromallo  et  al.,  2008; Duggen  et  al.,  2009;
Mériaux  et  al.,  2015). Oyarzun  et  al.  (1997) propose  that  the  first
plume-suction event occurred during the Late Cretaceous opening
of  the  southern  branch  of  the  North  Atlantic  while  the  second
event—the  formation  of  the  ECRIS—allowed  the  final  north-
northeast-directed pervasion of the European domain by the long-
lived plume material and alkaline volcanism. In the REVEAL model
(Figure  4),  we  observe  an  elongated  low-velocity  feature  that
extends  from  the  Canary  archipelago  to  Morocco  and  the
Mediterranean  terminating  around  the  Massif  Central.  While  this
supports the possibility of relatively geochemically uniform mate-
rial spreading across the shallow sub-lithospheric mantle beneath
North Africa and Western Europe, which could explain the alkaline
activity in these regions, the hypothesis does not account for the
Central  European  volcanism  (e.g.,  Bohemian  Massif,  Rhenish
Massif,  Heagu-Urach volcanic area,  see Figure 1).  To address this,
we propose that the alternative source is the ECRA plume, which
we identify in this study.

In conclusion, we attribute the low-velocity layer at the bottom of
the mantle to the northern part of the African LLSVP, as indicated
by  many  global  tomography  models  (e.g., Simmons  et  al.,  2012;
Auer  et  al.,  2014; French  and  Romanowicz,  2014).  This  region
serves  as  a  common  root  for  the  CEAA  and  ECRA  plumes,  which
ascend to the base of the MTZ, possibly triggering much narrower
upper-mantle upwellings. The localized nature of scattered, small-
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scale  volcanism  across  the  province  (Figure  1c)  reflects  tectonic

control on magmatic upwelling paths. In this context, we provide

evidence  for  a  lower-mantle  source  feeding  these  upper-mantle

upwellings,  which  was  not  recognized  in Lustrino  and  Wilson

(2007)’s model. The little variations of the geochemical character-

istics of the volcanic fields across the region can be seen as a func-

tion of lithospheric heterogeneities within different terrane blocks

(Wilson and Downes, 1991).

The  interaction  of  the  upper-mantle  plume  material  with

subducted material under southern Europe and the predominantly

compressive European stress regime (Carafa and Barba, 2013) may

have  prevented  the  progress  of  the  rift  development  and  the

formation  of  a  great  amount  of  volcanism,  as  observed  in  other

rifting zones like the Afro-Arabian rift system or in Iceland.

The  role  of  the  Alpine  subducted  slab  in  regulating  mantle  flow

and its potential impact on volcanic activity in Europe remains an

important  area  for  future  research.  4-D  numerical  modeling

applied  to  a  similar  tectonic  setting,  such  as  the  Yellowstone

volcanic province in western U.S.—where a mantle plume interacts

with  the  Farallon  subduction—shows  that  the  slab  consistently

obstructs its ascent. The plume could only reach the surface after

interacting with the broken slab hinge around 15 Ma, as shown by

Leonard and Liu LJ (2016). Consequently, the conventional plume

model fails to predict the presence of voluminous hot materials at

shallow depths beneath the region, indicating that the dynamics

of plume rise is more complex than previously thought.

In the context of European Cenozoic volcanism, testing whether a

similar  mechanism  might  be  at  play  is  essential.  Geodynamic

models, particularly those that incorporate data assimilation tech-

niques as demonstrated by Zhou Q et al. (2018), will be critical in

assessing  the  extent  to  which  mantle  plumes  contribute  to  the

alkaline volcanism observed in the ECRIS.  These models can help

refine our understanding of mantle dynamics and their interaction

with  subducted  slabs,  providing  a  more  comprehensive  view  of

the forces shaping Earth’s volcanic regions. 

4.  Final Remarks
Seismic  tomography results  support  the  hypothesis  that  a  broad

plume (ECRA) originates from a lowermost mantle source beneath

the Eastern Atlantic, providing a plausible geodynamic framework

for the alkaline volcanic activity in Western-Central Europe. While

plate-boundary  forces  are  crucial  in  driving  Cenozoic  rifting  in

Europe,  regional  mantle  structure  also  plays  a  significant  role  in

modulating  stress  variations,  intraplate  tectonic  styles,  and

volcanic  activity.  Future  high-resolution,  whole-mantle  tomogra-

phy studies, combined with geodynamic modeling, should further

elucidate  the  relationship  between  the  ECRA  plume,  astheno-

spheric upwellings across Europe, and the subducted Alpine litho-

sphere. 
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