EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

2020 Vol.4(4)

Display Mode:          |     

OBITUARY
In memory of professor Weixing Wan
2020, 4(4): 329-330. doi: 10.26464/epp2020051
Abstract:
EDITORIAL
The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1)
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu
2020, 4(4): 331-332. doi: 10.26464/epp2020052
Abstract:
LETTER
PLANETARY SCIENCES
Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun
2020, 4(4): 333-344. doi: 10.26464/epp2020053
Abstract:
The main objective of the Mars Ion and Neutral Particle Analyzer (MINPA) aboard the Chinese Mars Exploration Mission (Tianwen-1) is to study the solar wind–Mars interaction by measuring the ions and energetic neutral atoms (ENAs) near Mars. The MINPA integrates ion and ENA measurements into one sensor head, sharing the same electronics box. The MINPA utilizes a standard toroidal top-hat electrostatic analyzer (ESA) followed by a time of flight (TOF) unit to provide measurement of ions with energies from 2.8 eV to 25.9 keV and ENAs from 50 eV to 3 keV with a base time resolution of 4 seconds. Highly polished silicon single crystal substrates with an Al2O3 film coating are used to ionize the ENAs into positive ions. These ions can then be analyzed by the ESA and TOF, to determine the energy and masses of the ENAs. The MINPA provides a 360°×90° field of view (FOV) with 22.5°×5.4° angular resolution for ion measurement, and a 360°×9.7° FOV with 22.5°×9.7° angular resolution for ENA measurement. The TOF unit combines a –15 kV acceleration high voltage with ultra-thin carbon foils to resolve H+, He2+, He+, O+, O2+ and CO2+ for ion measurement and to resolve H and O (≥ 16 amu group) for ENA measurement. Here we present the design principle and describe our ground calibration of the MINPA.
PLANETARY SCIENCES
The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang
2020, 4(4): 345-354. doi: 10.26464/epp2020054
Abstract:
China's Mars probe, named Tianwen-1, including an orbiter and a landing rover, will be launched during the July-August 2020 Mars launch windows. Selected to be among the rover payloads is a Subsurface Penetrating Radar module (RoSPR). The main scientific objective of the RoSPR is to characterize the thickness and sub-layer distribution of the Martian soil. The RoSPR consists of two channels. The low frequency channel of the RoSPR will penetrate the Martian soil to depths of 10 to 100 m with a resolution of a few meters. The higher frequency channel will penetrate to a depth of 3 to 10 m with a resolution of a few centimeters. This paper describes the design of the instrument and some results of field experiments.
PLANETARY SCIENCES
Calibration of Mars Energetic Particle Analyzer (MEPA)
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun
2020, 4(4): 355-363. doi: 10.26464/epp2020055
Abstract:
The first Mars exploration mission of China (Tianwen-1) is scheduled to be launched in 2020; a charged particle telescope, the Mars Energetic Particle Analyzer (MEPA), is carried as one of the payloads on the orbiter. The MEPA is designed to measure solar energetic particles (SEPs) and galactic cosmic rays (GCRs) in the near-Mars space and in the transfer orbit from Earth to Mars. Before the launch, the MEPA was calibrated in ground experiments with radioactive sources, electronic pulses, and accelerator beams. The calibration parameters, such as energy conversion constants, threshold values for the triggers, and particle identification criteria, were determined and have been stored for onboard use. The validity of the calibration parameters has been verified with radioactive sources and beams. The calibration results indicate that the MEPA can measure charged particles reliably, as designed, and that it can satisfy the requirements of the Tianwen-1 mission.
PLANETARY SCIENCES
Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1
GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu
2020, 4(4): 364-370. doi: 10.26464/epp2020056
Abstract:
China's first Mars exploration mission will carry out comprehensive global surveys of the planet from data collected by instruments carried in orbit and roving on the planet itself. Goals of the mission include detailed inspections and surveys of key areas on the surface of Mars. One of the main scientific payloads installed on the orbiter is the moderate resolution camera. Its mission is to image the surface of Mars sufficiently to produce a global remote sensing image map of the planet, and to explore and record changes to the topography of Mars, including major geological structures, and to advance research on topography and geomorphology in general. The moderate resolution camera uses a lightweight and compact integrated design; its primary components are an optical module, a focal plane module, a camera control module, a power and interface module, a camera support module, a thermal control module, and a reference module. Radiometric calibration, color calibration, and geometric calibration have been carried out to ensure that the camera can acquire sufficient accurate data to complete mission goals. This paper introduces the camera's detection mission, its system composition, and its working principle; it also describes the camera's ground calibration tests and their results, and provides a reference for processing the camera's scientific data and for future applications.
Overview of the Mars climate station for Tianwen-1 mission
YongQing Peng, LeiBo Zhang, ZhiGuo Cai, ZhaoGang Wang, HaiLong Jiao, DongLi Wang, XianTao Yang, LianGuo Wang, Xu Tan, Feng Wang, Jing Fang, ZhouLu Sun, HongLiang Feng, XiaoRui Huang, Yan Zhu, Ming Chen, LiangHai Li, YanHua Li
2020, 4(4): 371-383. doi: 10.26464/epp2020057
Abstract:
The background and scientific objectives of the Mars Climate Station (MCS) for Tianwen-1 are introduced, accompanied by a comparative review of the status of related meteorological observation missions and of advanced sensing technologies. As one of the China Tianwen-1 Mission’s principal scientific payloads, the MCS contains four measurement sensors and one electronic processing unit that are specially designed to measure local temperature, pressure, wind, and sound on the Martian surface. The MCS’s measurement principles, technical schemes, ground calibration techniques, and adaptability evaluation to the Mars surface environment of MCS are introduced in details. The conclusion presents measurement performance specifications of the MCS, based on ground test results, that will provide guidance to future research based on data from the Tianwen-1 and later Mars missions.
Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang
2020, 4(4): 384-389. doi: 10.26464/epp2020058
Abstract:
As one of the seven scientific payloads on board the Tianwen-1 orbiter, the Mars Orbiter Magnetometer (MOMAG) will measure the magnetic fields of and surrounding Mars to study its space environment and the interaction with the solar wind. The instrument consists of two identical triaxial fluxgate magnetometer sensors, mounted on a 3.19 meter-long boom with a seperation of about 90 cm. The dual-magnetometers configuration will help eliminate the magnetic field interference generated by the spacecraft platform and payloads. The sensors are controlled by an electric box mounted inside the orbiter. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 10,000 nT per axis) with a resolution of 1.19 pT. Both magnetometers sample the ambient magnetic field at an intrinsic frequency of 128 Hz, but will operate in a model with alternating frequency between 1 and 32 Hz to meet telemetry allocations.
RESEARCH ARTICLE
PLANETARY SCIENCES
Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni
2020, 4(4): 390-395. doi: 10.26464/epp2020035
Abstract:
An important population of the dayside Martian ionosphere are photoelectrons that are produced by solar Extreme Ultraviolet and X-ray ionization of atmospheric neutrals. A typical photoelectron energy spectrum is characterized by a distinctive peak near 27 eV related to the strong solar HeII emission line at 30.4 nm, and an additional peak near 500 eV related to O Auger ionization. In this study, the extensive measurements made by the Solar Wind Electron Analyzer on board the recent Mars Atmosphere and Volatile Evolution spacecraft are analyzed and found to verify the scenario that Martian ionosphere photoelectrons are driven by solar radiation. We report that the photoelectron intensities at the centers of both peaks increase steadily with increasing solar ionizing flux below 90 nm and that the observed solar cycle variation is substantially more prominent near the O Auger peak than near the HeII peak. The latter observation is clearly driven by a larger variability in solar irradiance at shorter wavelengths. When the solar ionizing flux increases from 1 mW·m-2 to 2.5 mW·m-2, the photoelectron intensity increases by a factor of 3.2 at the HeII peak and by a much larger factor of 10.5 at the O Auger peak, both within the optically thin regions of the Martian atmosphere.
PLANETARY SCIENCES
Observation of CO2++ dication in the dayside Martian upper atmosphere
Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei
2020, 4(4): 396-402. doi: 10.26464/epp2020036
Abstract:
Doubly charged positive ions (dications) are an important component of planetary ionospheres because of the large energy required for their formation. Observations of these ions are exceptionally difficult due to their low abundances; until now, only atomic dications have been detected. The Neutral Gas and Ion Mass Spectrometer (NGIMS) measurements made on board the recent Mars Atmosphere and Volatile Evolution mission provide the first opportunity for decisive detection of molecular dications, CO2++ in this case, in a planetary upper atmosphere. The NGIMS data reveal a dayside averaged CO2++ distribution declining steadily from 5.6 cm−3 at 160 km to below 1 cm−3 above 200 km. The dominant CO2++ production mechanisms are double photoionization of CO2 below 190 km and single photoionization of CO2+ at higher altitudes; CO2++ destruction is dominated by natural dissociation, but reactions with atmospheric CO2 and O become important below 160 km. Simplified photochemical model calculations are carried out and reasonably reproduce the data at low altitudes within a factor of 2 but underestimate the data at high altitudes by a factor of 4. Finally, we report a much stronger solar control of the CO2++ density than of the CO2+ density .
PLANETARY SCIENCES
Bidirectional electron conic observations for photoelectrons in the Martian ionosphere
YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He
2020, 4(4): 403-407. doi: 10.26464/epp2020037
Abstract:
Electron pitch angle distributions similar to bidirectional electron conics (BECs) have been reported at Mars in previous studies based on analyses of Mars Global Surveyor measurements. BEC distribution, also termed “butterfly” distribution, presents a local minimum flux at 90° and a maximum flux before reaching the local loss cone. Previous studies have focused on 115 eV electrons that were produced mainly via solar wind electron impact ionization. Here using Solar Wind Electron Analyzer measurements made onboard the Mars Atmosphere and Volatile Evolution spacecraft, we identify 513 BEC events for 19–55 eV photoelectrons that were generated via photoionization only. Therefore, we are investigating electrons observed in regions well away from their source regions, to be distinguished from 115 eV electrons observed and produced in the same regions. We investigate the spatial distribution of the 19–55 eV BECs, revealing that they are more likely observed on the nightside as well as near strong crustal magnetic anomalies. We propose that the 19–55 eV photoelectron BECs are formed due to day-to-night transport and the magnetic mirror effect of photoelectrons moving along cross-terminator closed magnetic field lines.
PLANETARY SCIENCES
A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs
JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen
2020, 4(4): 408-419. doi: 10.26464/epp2020038
Abstract:
Profiles of the Martian dayside ionosphere can be used to derive the neutral atmospheric densities at 130 km, which can also be obtained from the Mars Climate Database (MCD) and spacecraft aerobraking observations. In this research, we explain the method used to calculate neutral densities at 130 km via ionosphere observations and three long-period 130-km neutral density data sets at northern high latitudes (latitudes > 60°) acquired through ionospheric data measured by the Mars Global Surveyor (MGS) Radio Occultation Experiment. The calculated 130-km neutral density data, along with 130-km density data from the aerobraking observations of the MGS and Mars Odyssey (ODY) in the northern high latitudes, were compared with MCD outputs at the same latitude, longitude, altitude, solar latitude, and local time. The 130-km density data derived from both the ionospheric profiles and aerobraking observations were found to show seasonal variations similar to those in the MCD data. With a negative shift of about 2 × 1010 cm−3, the corrected 130-km neutral densities derived from MCD v4.3 were consistent with those obtained from the two different observations. This result means that (1) the method used to derive the 130-km neutral densities with ionospheric profiles was effective, (2) the MCD v4.3 data sets generally overestimated the 130-km neutral densities at high latitudes, and (3) the neutral density observations from the MGS Radio Science Experiment could be used to calibrate a new atmospheric model of Mars.
PLANETARY SCIENCES
A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan
2020, 4(4): 420-428. doi: 10.26464/epp2020045
Abstract:
Unlike Earth, Mars lacks a global dipolar magnetic field but is dominated by patches of a remnant crustal magnetic field. In 2021, the Chinese Mars Rover will land on the surface of Mars and measure the surface magnetic field along a moving path within the possible landing region of 20°W–50°W, 20°N–30°N. One scientific target of the Rover is to monitor the variation in surface remnant magnetic fields and reveal the source of the ionospheric current. An accurate local crustal field model is thus considered necessary as a field reference. Here we establish a local crust field model for the candidate landing site based on the joint magnetic field data set from Mars Global Explorer (MGS) and Mars Atmosphere and Volatile Evolution (MAVEN) data combined. The model is composed of 1,296 dipoles, which are set on three layers but at different buried depths. The application of the dipole model to the joint data set allowed us to calculate the optimal parameters of their dipoles. The calculated results demonstrate that our model has less fitting error than two other state-of-the art global crustal field models, which would indicate a more reasonable assessment of the surface crustal field from our model.