<

Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zong, Q. G., Y. F. Wang, J. Ren, X. Z. Zhou, S. Y. Fu, R. Rankin, H. Zhang (2017), Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth Planet. Phys., 1, 2-12, doi: 10.26464/epp2017002

2017, 1(1): 2-12. doi: 10.26464/epp2017002

Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves

1. 

Institute of Space Physics and Applied Technology, Peking University, Beijing 100871, China

2. 

Department of Physics, University of Alberta, Edmonton, Alberta, Canada

3. 

Physics Department and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, USA

Corresponding author: Qiu-Gang Zong, qgzong@pku.edu.cn

Received Date: 2017-02-27
Web Publishing Date: 2017-01-01

The purpose of this paper is to understand how low energy plasmaspheric electrons respond to ULF waves excited by interplanetary shocks impinging on magnetosphere. It is found that both energy and pitch angle dispersed plasmaspheric electrons with energy of a few eV to tens of eV can be generated simultaneously by the interplanetary shock. The subsequent period of successive dispersion signatures is around 40 s and is consistent with the ULF wave period (third harmonic). By tracing back the energy and pitch angle dispersion signatures, the position of the electron injection region is found to be off-equator at around –32° in the southern hemisphere. This can be explained as the result of injected electrons being accelerated by higher harmonic ULF waves (e.g. third harmonic) which carry a larger amplitude electric field off-equator. The dispersion signatures are due to the flux modulations (or accelerations) of " local” plasmaspheric electrons rather than electrons from the ionosphere. With the observed wave-borne large electric field excited by the interplanetary shock impact, the kinetic energy can increase to a maximum of 23 percent in one bouncing cycle for plasmaspheric electrons satisfying the drift-bounce resonance condition by taking account of both the corotating drift and bounce motion of the local plasmaspheric electron.

Key words: drift-bounce resonance, plasmaspheric electron, poloidal mode, ULF wave

Anderson, B. J., and D. C. Hamilton (1993), Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions, J. Geophys. Res., 98(A7), 11369-11382, doi: 10.1029/93JA00605.

Baker, D. N., S. G. Kanekal, X. Li, S. P. Monk, J. Goldstein, and J. L. Burch (2004), An extreme distortion of the Van Allen belt arising from the ‘Hallowe’en’ solar storm in 2003, Nature, 432, 878-881, doi: 10.1038/nature03116.

Balogh, A., M. W. Dunlop, S. W. H. Cowley, D. J. Southwood, J. G. Thomlinson, K. H. Glassmeier, G. Musmann, H. Lühr, S. Buchert, M. H. Acuña, D. H. Fairfield, J. A. Slavin, W. Riedler, K. Schwingenschuh, and M. G. Kivelson (1997), The cluster magnetic field investigation, Space Sci. Rev., 79, 65-91, doi: 10.1023/A:1004970907748.

Blake, J. B., W. A. Kolasinski, R. W. Fillius, and E. G. Mullen (1992), Injection of electrons and protons with energies of tens of MeV into l>3 on 24 March 1991, Geophys. Res. Lett., 19, 821-824, doi: 10.1029/92GL00624.

Cahill, L. J., Lin, N. G., Waite, J. H., Engebretson, M. J., and Sugiura, M. (1990), Toroidal standing waves excited by a storm sudden commencement: DE 1 observations, J. Geophys. Res., 95, 7857-7867, doi: 10.1029/JA095iA06p07857.

Chen, L., and Hasegawa, A. (1974), A theory of long-period magnetic pulsations: 1. Steady state excitation of field line resonance, J. Geophys. Res., 79, 1024 doi: 10.1029/JA079i007p01024.

Claudepierre, S. G., Wiltberger, M., Elkington, S. R., Lotko, W., and Hudson, M. K. (2009), Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations, Geophys. Res. Lett., 36, L13101, doi: 10.1029/2009GL039045.

Escoubet, C. P., Russell, C. T., and Schmidt, R. (1997). The Cluster and Phoenix Missions. Dordrecht, Netherlands: Kluwer Academic

Friedel, R. H. W., Reevesa, G. D., and Obara, T. (2002), Relativistic electron dynamics in the inner magnetosphere-a review, J. Atmos. Solar-Terr. Phys., 64, 265-282, doi: 10.1016/S1364-6826(01)00088-8.

Fu, H. S., Cao, J. B., Zong, Q.-G., Lu, H. Y., Huang, S. Y., Wei, X. H., and Ma, Y. D. (2012), The role of electrons during chorus intensification: Energy source and energy loss, J. Atmos. Solar-Terr. Phys., 80, 37-47, doi: 10.1016/j.jastp.2012.03.004.

Glassmeier, K.-H., Buchert, S., Motschmann, U., Korth, A., and Pedersen, A. (1999), Concerning the generation of geomagnetic giant pulsations by drift-bounce resonance ring current instabilities, Ann. Geophys., 17, 338-350, doi: 10.1007/s00585-999-0338-4.

Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004), Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561-566, doi: 10.5194/npg-11-561-2004.

Gustafsson, G., André, M., Carozzi, T., Eriksson, A. I., Fälthammar, C.-G., Grard, R., Holmgren, G., Holtet, J. A., Ivchenko, N., Karlsson, T., Khotyaintsev, Y., Klimov, S., Laakso, H., Lindqvist, P.-A., Lybekk, B., Marklund, G., Mozer, F., Mursula, K., Pedersen, A., Popielawska, B., Savin, S., Stasiewicz, K., Tanskanen, P., Vaivads, A., and Wahlund, J.-E. (2001), First results of electric field and density observations by CLUSTER EFW based on initial months of operation, Ann. Geophys., 19, 1219-1240, doi: 10.5194/angeo-19-1219-2001.

Hayashi, K., Oguti, T., Watanbe, T., Tsuruda, K., Kokubun, S., and Horita R. E.(1978), Power harmonic radiation enhancement during the sudden commencement of a magnetic storm, Nature, 275, 627-629, doi: 10.1038/275627a0.

Hudson, M. K., Elkington, S. R., Lyon, J. G., Marchenko V. A., Roth, I., Temerin M., Blake, J. B., Gussenhoven, M. S., and Wygant J. R. (1997), Simulations of radiation belt formation during storm sudden commencements, J. Geophys. Res., 102(A7), 14087-14102, doi: 10.1029/97JA03995.

Hudson, M. K., Denton, R. E., Lessard, M. R., Miftakhova, E. G., and Anderson, R. R. (2004), A study of Pc-5 ULF oscillations, Ann. Geophys., 22, 289-302, doi: 10.5194/angeo-22-289-2004.

Hudson, M. K., Kress, B. T., Mueller, H. R., Zastrow J. A., and Bernard Blake, J. (2008), Relationship of the Van Allen radiation belts to solar wind drivers, J. Atmos. Solar-Terr. Phys., 70, 708-729, doi: 10.1016/j.jastp.2007.11.003.

Hughes, W. J., McPherron, R. L., and Barfield, J. N. (1978), Geomagnetic pulsations observed simultaneously on three geostationary satellites, J. Geophys. Res., 83(A3), 1109-1116, doi: 10.1029/JA083iA03p01109.

Johnstone, A. D., Alsop, C., Burge, S., Carter, P. J., Coates, A. J., Coker, A. J., Fazakerley, A. N., Grande, M., Gowen, R. A., ... Woodliffe, R. D. (1997), Peace: A plasma electron and current experiment, Space Sci. Rev., 79, 351-398, doi: 10.1023/A:1004938001388.

Kepko, L., and Spence, H. E. (2003), Observations of discrete, global magnetospheric oscillations directly driven by solar wind density variations, J. Geophys. Res., 108(A6), 1257, doi: 10.1029/2002JA009676.

Korth, A., Fränz, M., Zong, Q.-G., Fritz, T. A., Sauvaud, J.-A., Rème, Dandouras, H., Friedel, I., R., Mouikis, C. G., Kistler, L. M., Möbius, E., Marcucci, M. F., Wilber, M., Parks, G., Keiling, A., Lundin, R., and Daly, P. W. (2004), Ion injections at Auroral latitude during the March 31, 2001 magnetic storm observed by cluster, Geophys. Res. Lett., 31, L20806, doi: 10.1029/2004GL020356.

Lanzerotti, L. J., and Southwood, D. J. (1979). Hydromagnetic waves. In J. H. Jr Waite, et al. (Eds.), Solar System Plasma Physics;. Amsterdam: North-Holland Publishing Co., 109-135

Li, X. L., Roth, I., Temerin, M., Wygant, J. R., Hudson, M. K., and Blake, J. B. (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, Geophys. Res. Lett., 20, 2423-2426, doi: 10.1029/93GL02701.

Looper, M. D., Blake, J. B., Mewaldt, R. A., Cummings J. R., and Baker, D. N. (1995), Observations of the remnants of the ultrarelativistic electrons injected by the strong SSC of 24 March 1991, Geophys. Res. Lett., 22, 2079-2082, doi: 10.1029/94GL01586.

Loto’aniu, T. M., Mann, I. R., Ozeke, L. G., Chan, A. A., Dent, Z. C., and Milling, D. K. (2006), Radial diffusion of relativistic electrons into the radiation belt slot region during the 2003 Halloween geomagnetic storms, J. Geophys. Res., 111(A4), A04218, doi: 10.1029/2005JA011355.

Northrop, T. G. (1963), Adiabatic charged-particle motion, Rev. Geophys. Space Phys., 1, 283-304, doi: 10.1029/RG001i003p00283.

Olson, J. V., and Lee, L. C. (1983), Pc1 wave generation by sudden impulses, Space Sci., 31, 295C302, doi: 10.1016/0032-0633(83)90079-X.

Ozeke, L. G., and I. R. Mann (2008), Energization of radiation belt electrons by ring current ion driven ULF waves, J. Geophys. Res., 113(A2), A02201, doi: 10.1029/2007JA012468.

Park, C. G. (1975), Whistler observations during a magnetospheric sudden impulse, J. Geophys. Res., 80, 4738-4740, doi: 10.1029/JA080i034p04738.

Rème, H., Bosqued, J. M., Sauvaud, J. A., Cros, A., Dandouras J., Aoustin C., Bouyssou, J., Camus, T., Cuvilo J., Martz C., Médale, J. L., Perrier, H., Romefort, D., Rouzaud, J., D'Uston, C., Möbius, E., Crocker, K., Granoff, M., Kistler, L. M., Popecki, M., Hovestadt, D., Klecker B., Paschmann, G., Scholer, M., Carlson, C. W., Curtis, D. W., Lin, R. P., Mcfadden, J. P., Formisano, V., Amata, E., Bavassano-Cattaneo, M. B., Baldetti, P., Belluci, G., Bruno, R., Chionchio, G., Di Lellis, A., Shelley, E. G., Ghielmetti, A. G., Lennartsson, W., Korth, A., Rosenbauer, H., Lundin, R., Olsen, S., Parks, G. K., McCarthy, M., and Balsiger, H. (1997), The cluster ion spectrometry (CIS) experiment, Space Sci. Rev., 79, 303-350, doi: 10.1023/A:1004929816409.

Roederer, J. G. (1970). Dynamics of Geomagnetically Trapped Radiation. New York: Springer-Verlag

Southwood, D. J. (1974), Some features of field line resonances in the magnetosphere, Planet. Space Sci., 22, 483-491, doi: 10.1016/0032-0633(74)90078-6.

Southwood, D. J., and Kivelson, M. G. (1981), Charged particle behavior in low-frequency geo-magnetic pulsations. 1. Transverse waves, J. Geophys. Res., 86(A7), 5643-5655, doi: 10.1029/JA086iA07p05643.

Southwood, D. J., and Hughes, W. J. (1982), Theory of hydromagnetic waves in the magnetosphere, Space Sci. Rev., 35, 301-366, doi: 10.1007/BF00169231.

Takahashi, K., McEntire, R. W., Lui, A. T. Y., and Potemra, T. A. (1990), Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation, J. Geophys. Res., 95(A4), 3717-3731, doi: 10.1029/JA095iA04p03717.

Tan, L. C., Fung, S. F., and Shao, X. (2004), Observation of magnetospheric relativistic electrons accelerated by Pc-5 ULF waves, Geophys. Res. Lett., 31, L14802, doi: 10.1029/2004GL019459.

Tan, L. C., Shao, X., Sharma, A. S., and Fung, S. F. (2011), Relativistic electron acceleration by compressional-mode ULF waves: Evidence from correlated Cluster, Los Alamos National Laboratory spacecraft, and ground-based magnetometer measurements, Geophys. Res. Lett., 116(A7), A07226, doi: 10.1029/2010JA016226.

Vampola, A. L., and Korth A. (1992), Eletron drift echoes in the inner magnetosphere, Geophys. Res. Lett., 19, 625-628, doi: 10.1029/92GL00121.

Wilken, B., Goertz, C. K., Baker, D. N., Higbie, P. R., and Fritz, T. A. (1982), The SSC on July 29, 1977 and its propagation within the magnetosphere, J. Geophys. Res., 87(A8), 5901-5910, doi: 10.1029/JA087iA08p05901.

Wilken, B., Baker, D. N., Higbie, P. R., Fritz, T. A., Olson, W. P., and Pfitzer, K. A. (1986), Magnetospheric configuration and energetic particle effects associated with a SSC: A case study of the CDAW 6 event on March 22, 1979, J. Geophys. Res., 91(A2), 1459-1473, doi: 10.1029/JA091iA02p01459.

Wilken, B., Daly, P. W., Mall, U., Aarsnes, K., Baker, D. N., Belian, R. D., Blake, J. B., Borg, H., Büchner, J., Carter, M., Fennell, J. F., Friedel, R., Fritz, T. A., Gliem, F., Grande, M., Kecskemety, K., Kettmann, G., Korth, A., Livi, S., McKenna-Lawlor1, S., Mursula1, K., Nikutowski, B., Perry, C. H., Pu1, Z. Y., Roeder, J., Reeves, G. D., Sarris, E. T., Sandahl1, I., Søraas, Woch, F., J., and Zong, Q.-G. (2001), First results from the rapid imaging energetic particle spectrometer on board cluster, Ann. Geophys., 19, 1355-1366, doi: 10.5194/angeo-19-1355-2001.

Wright, D. M., Yeoman, T. K., Rae, I. J., Storey, J., Stockton-Chalk, A. B., Roeder, J. L., and Trattner, K. J. (2001), Ground-based and Polar spacecraft observations of a giant (Pg) pulsation and its associated source mechanism, J. Geophys. Res., 106(A6), 10837-10852, doi: 10.1029/2001JA900022.

Wygant, J., Mozer, F., Temerin, M., Blake, J., Maynard, N., Singer, H., and Smiddy, M. (1994), Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes, Geophys. Res. Lett.,, 21, 1739-1742, doi: 10.1029/94GL00375.

Yang, B., Zong, Q.-G., Wang, Y. F., Fu, S. Y., Song, P., Fu, H. S., Korth, A., Tian, T., and Reme, H. (2010), Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere, J. Geophys. Res., 115(A2), A02214, doi: 10.1029/2009JA014542.

Yang, B., Zong, Q.-G., Fu, S. Y., Li, X., Korth, A., Fu, H. S, Yue, C., and Reme, H. (2011a), The role of ULF waves interacting with oxygen ions at the outer ring current during storm times, J. Geophys. Res., 116(A1), A01203, doi: 10.1029/2010JA015683.

Yang, B., Zong, Q.-G., Fu, S. Y., Takahashi, K., Li, X., Wang, Y. F., Pu, Z. Y., Fu, H. S., Reme, H., Yue, C., Zheng, H., and Sheng, C. (2011b), Pitch angle evolutions of oxygen ions driven by storm time ULF poloidal standing waves, J. Geophys. Res., 116(A3), A03207, doi: 10.1029/2010JA016047.

Yue, C., Li, W., Nishimura, Y., Zong, Q.-G., Ma, Q. L., Bortnik, J., Thorne, R.M., Reeves, G. D., Spence, H. E., Kletzing, C. A., Wygant, J. R., and Nicolls, M. J. (2016), Rapid enhancement of low-energy (>100 eV) ion flux in response to interplanetary shocks based on two Van Allen probes case studies: Implications for source regions and heating mechanisms, J. Geophys. Res., 121, 6430-6443, doi: 10.1002/2016JA022808.

Zhang, X. Y., Zong, Q. G., Yang, B., and Wang, Y. F. (2009), Numerical simulation of magnetospheric ULF waves excited by positive and negative impulses of solar wind dynamic pressure, Sci. China Ser. E-Tech. Sci., 52, 2286-2894, doi: 10.1007/s11431-009-0270-6.

Zhang, X. Y., Zong, Q.-G., Wang, Y. F., Zhang, H., Xie, L., Fu, S. Y., Yuan, C. J., Yue, C., Yang, B., and Pu, Z. Y. (2010), ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit, J. Geophys. Res., 115(A10), A10221, doi: 10.1029/2009JA015016.

Zong, Q-G., Wilken, B., Fu, S.-Y., Fritz, T. A., Korth, A., Hasebe, N., Williams, D. J., and Pu, Z.-Y. (2001), Ring current oxygen ions escaping into the magnetosheath, J. Geophys. Res., 106(A11), 25541-25556, doi: 10.1029/2000JA000127.

Zong, Q-G., Zhou, X.-Z., Li, X., Song, P., Fu, S. Y., Baker, D. N., Pu, Z. Y., Fritz, T. A., Daly, P., Balogh, A., and Réme, H. (2007), Ultralow frequency modulation of energetic particles in the dayside magnetosphere, Geophys. Res. Lett., 34, L12105, doi: 10.1029/2007GL029915.

Zong, Q-G., Wang, Y. F., Yang, B., Fu, S. Y., Pu, Z. Y., Xie, L., and Fritz, T. A. (2008), Recent progress on ULF wave and its interactions with energetic particles in the inner magnetosphere, Sci. China Ser. E: Tech. Sci., 51, 1620-1625, doi: 10.1007/s11431-008-0253-z.

Zong, Q-G., Zhou, X.-Z., Wang, Y. F., Li, X., Song, P., Baker, D. N., Fritz, T. A., Daly, P. W., Dunlop, M., and Pedersen, A. (2009), Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt, J. Geophys. Res., 114(A10), A10204, doi: 10.1029/2009JA014393.

Zong, Q-G., Wang, Y. F., Yuan, C. J., Yang, B., Wang, C. R., and Zhang, X. Y. (2011), Fast acceleration of " killer” electrons and energetic ions by interplanetary shock stimulated ULF waves in the inner magnetosphere, Chin. Sci. Bull., 56, 1188-1201, doi: 10.1007/s11434-010-4308-8.

Zong, Q-G., Wang, Y. F., Zhang, H., Fu, S. Y., Zhang, H., Wang, C. R., Yuan, C. J., and Vogiatzis, I. (2012), Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves, J. Geophys. Res., 117(A11), A11206, doi: 10.1029/2012JA018024.

[1]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[2]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[3]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 1-7. doi: 10.26464/epp2018022

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
Catalog

Figures And Tables

Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang