<

Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

2017, 1(1): 44-52. doi: 10.26464/epp2017006

A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating

1. 

CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei 230026, China

3. 

Collaborative Innovation Center of Astronautical Science and Technology, Harbin 150001, China

4. 

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

5. 

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: JiuHou Lei, leijh@ustc.edu.cn

Received Date: 2017-07-25
Web Publishing Date: 2017-01-01

One of the important effects of the ionospheric modification by high-power waves is the airglow enhancement. Both the thermal electrons and the dissociation recombination contribute to generate the airglow emissions during HF heating. However, the relative importance of the airglow emission induced by dissociative recombination and thermal electrons has been rarely investigated. In this study, we carry out a simulation study on the airglow produced by high-power HF heating at nighttime associated with dissociative recombination and thermal electrons. SAMI2 (Sami2 is Another Model of the Ionosphere) is employed to simulate the ionospheric variations during the HF heating. The main conclusions from this study are as follows: (1) For the airglow induced by dissociative recombination, both 630.0 nm and 557.7 nm emissions show a decrease at the heating wave reflection height during the heating period, while when the heating is turned off, an increase is shown at lower altitudes. The reduction of airglow during the heating is caused by the rapid increase of electron temperature and the diffusion of plasmas dominates the after-heating airglow enhancement. (2) 630.0 nm emission due to thermal electrons is greatly enhanced at the wave reflection height, indicating that thermal electrons play a major role in exciting 630.0 nm emission. For the 557.7 nm emission, the excitation threshold (4.17 eV) is too high for thermal electrons. (3) The combined effect of dissociative recombination and thermal electrons could be the possible reason for the observed X-mode (extraordinary mode) suppression of 630.0 nm airglow during O-mode (ordinary mode) enhancement.

Key words: airglow, thermal electron, dissociative recombination, HF heating

Banks, P. M., Chappell, C. R., and Nagy, A. F. (1974), A new model for the interaction of auroral electrons with the atmosphere: Spectral degradation, backscatter, optical emission, and ionization, J. Geophys. Res., 79(10), 1459-1470, doi: 10.1029/JA079i010p01459.

Bates, D. R. (1992), Nightglow emissions from oxygen in the lower thermosphere, Planet. Space Sci., 40(2), 211-221, doi: 10.1016/0032-0633(92)90059-W.

Bernhardt, P. A., Duncan, L. M., and Tepley, C. A. (1988), Artificial airglow excited by high-power radio waves, Science, 242(4881), 1022-1027, doi: 10.1126/science.242.4881.1022.

Bernhardt, P. A., Tepley, C. A., and Duncan, L. M. (1989), Airglow enhancements associated with plasma cavities formed during Ionospheric Heating Experiments, J. Geophys. Res., 94(A7), 9071-9092, doi: 10.1029/JA094iA07p09071.

Biondi, A. A., Sipler, D. P., and Hake Jr, R. D. (1970), Optical (λ6300) detection of radio frequency heating of electrons in the F region, J. Geophys. Res., 75(31), 6421-6424, doi: 10.1029/JA075i031p06421.

Brändström, B. U. E., Leyser, T. B., Steen, Å., Rietveld, M. T., Gustavsson, B., Aso, T., and Ejiri, M. (1999), Unambiguous evidence of HF pump-enhanced airglow at auroral latitudes, Geophys. Res. Lett., 26(23), 3561-3564, doi: 10.1029/1999GL010693.

Djuth, F. T., Bernhardt, P. A., Tepley, C. A., Gardner, J. A., Kelley, M. C., Broadfoot, A. L., Kagan, L. M., Sulzer, M. P., Elder, J. H., Selcher, C., Isham, B., Brown, C., and Carlson, H. C. (1999), Large airglow enhancements produced via wave-plasma interactions in sporadic E. Geophys, Res. Lett., 26(11), 1557-1560, doi: 10.1029/1999GL900296.

Djuth, F. T., Pedersen, T. R., Gerken, E. A., Bernhardt, P. A., Selcher, C. A., Bristow, W. A., and Kosch, M. J. (2005), Ionospheric modification at twice the electron cyclotron frequency, Phys. Rev. Lett., 94(12), 125001, doi: 10.1103/PhysRevLett.94.125001.

Fallen, C. T., Secan, J. A., and Watkins, B. J. (2011), In-situ measurements of topside ionosphere electron density enhancements during an HF-modification experiment, Geophys. Res. Lett., 38(8), L08101, doi: 10.1029/2011GL046887.

Gordon, W. E., and Carlson Jr, H. C. (1974), Arecibo heating experiments, Radio Sci., 9(11), 1041-1047, doi: 10.1029/RS009i011p01041.

Grach, S. M. (1999), On kinetic effects in the ionospheric F-region modified by powerful radio waves, Radiophys. Quantum Electron., 42(7), 572-588, doi: 10.1007/bf02677563.

Gurevich, A. V., Dimant, Y. S., Milikh, G. M., and Vas'kov, V. V. (1985), Multiple acceleration of electrons in the regions of high-power radio-wave reflection in the ionosphere, J. Atmos. Terr. Phys., 47(11), 1057-1070, doi: 10.1016/0021-9169(85)90023-6.

Gurevich, A. V., and Milikh, G. M. (1997), Artificial airglow due to modifications of the ionosphere by powerful radio waves, J. Geophys. Res., 102(A1), 389-394, doi: 10.1029/96JA02916.

Gurevich, A. V. (2007), Nonlinear effects in the ionosphere, Physics-Uspekhi, 50(11), 1091-1121, doi: 10.1070/PU2007v050n11ABEH006212.

Gustavsson, B., Sergienko, T., Rietveld, M. T., Honary, F., Steen, A., Brändström, B. U. E., Leyser, T. B., Aruliah, A. L., Aso, T., Ejiri, M., and Marple, S. (2001), First tomographic estimate of volume distribution of HF-pump enhanced airglow emission, J. Geophys. Res., 106(A12), 29105-29123, doi: 10.1029/2000JA900167.

Gustavsson, B., Brändström, B. U. E., Steen, Å., Sergienko, T., Leyser, T. B., Rietveld, M. T., Aso T., and Ejiri, M. (2002), Nearly simultaneous images of HF-pump enhanced airglow at 6300 Å and 5577 Å, Geophys. Res. Lett., 29(24), 73-1, doi: 10.1029/2002GL015350.

Gustavsson, B., Sergienko, T., Häggström, I., Honary, F., and Aso, T. (2004), Simulation of high energy tail of electron distribution function, Adv. Polar Upper Atmos. Res., 18, 1-9.

Gustavsson, B., Sergienko, T., Kosch, M. J., Rietveld, M. T., Brändström, B. U. E., Leyser, T. B., Isham, B., Gallop, P., Aso, T., Ejiri, M., Grydeland, T., Steen, Å., LaHoz, C., Kaila, K., Jussila, J., and Holma, H. (2005), The electron energy distribution during HF pumping, a picture painted with all colors, Ann. Geophys., 23(5), 1747-1754, doi: 10.5194/angeo-23-1747-2005.

Gustavsson, B., Newsome, R., Leyser, T. B., Kosch, M. J., Norin, L., McCarrick, M., Pedersen, T., and Watkins, B. J. (2009), First observations of X-mode suppression of O-mode HF enhancements at 6300 Å, Geophys. Res. Lett., 36(20), L20102, doi: 10.1029/2009GL039421.

Hansen, J. D., Morales, G. J., and Maggs, J. E. (1989), Daytime saturation of thermal cavitons, J. Geophys. Res., 94(A6), 6833-6840, doi: 10.1029/JA094iA06p06833.

Holma, H., Kaila, K. U., Kosch, M. J., and Rietveld, M. T. (2006), Recognizing the blue emission in artificial aurora, Adv. Space Res., 38(11), 2653-2658, doi: 10.1016/j.asr.2005.07.036.

Huba, J. D., Joyce, G., and Fedder, J. A. (2000), Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 105(A10), 23035-23053, doi: 10.1029/2000ja000035.

Kosch, M. J., Pedersen, T., Rietveld, M. T., Gustavsson, B., Grach, S. M., and Hagfors, T. (2005), Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: An observational review, Adv. Space Res., 40(3), 365-376, doi: 10.1016/j.asr.2007.02.061.

Mantas, G. P. (1994), Large 6300-Å airglow intensity enhancements observed in Ionosphere Heating Experiments are excited by thermal electrons, J. Geophys. Res., 99(A5), 8993-9002, doi: 10.1029/94JA00347.

Mantas, G. P., and Carlson, H. C. (1996), Reinterpretation of the 6300-Å airglow enhancements observed in ionosphere heating experiments based on analysis of Platteville, Colorado, data, J. Geophys. Res., 101(A1), 195-209, doi: 10.1029/95JA02760.

Meltz, G., and F. W. Perkins (1974), Ionospheric modification theory: Past, present, and future, Radio Sci., 9(11), 885-888, doi: 10.1029/RS009i011p00885.

Milikh, G. M., Papadopoulos, K., Shroff, H., Chang, C. L., Wallace, T., Mishin, E. V., Parrot, M., and Berthelier, J. J. (2008), Formation of artificial ionospheric ducts, Geophys. Res. Lett., 35(17), L17104, doi: 10.1029/2008GL034630.

Milikh, G. M., Demekhov, A. G., Papadopoulos, K., Vartanyan, A., Huba, J. D., and Joyce, G. (2010a), Model for artificial ionospheric duct formation due to HF heating, Geophys. Res. Lett., 37(7), L07803, doi: 10.1029/2010GL042684.

Milikh, G. M., Mishin, E., Galkin, I., Vartanyan, A., Roth, C., and Reinisch, B. W. (2010b), Ion outflows and artificial ducts in the topside ionosphere at HAARP, Geophys. Res. Lett., 37(18), L18102, doi: 10.1029/2010GL044636.

Milikh, G. M., Demekhov, A., Vartanyan, A., Mishin, E. V., and Huba, J. (2012), A new model for formation of artificial ducts due to ionospheric HF-heating, Geophys. Res. Lett., 39(10), L10102, doi: 10.1029/2012GL051718.

Mishin, E., Carlson, H. C., and Hagfors, T. (2000), On the electron distribution function in the F region and airglow enhancements during HF modification experiments, Geophys. Res. Lett., 27(18), 2857-2860, doi: 10.1029/2000GL000075.

Mishin, E., Burke, W., and Pedersen, T. (2005), HF-induced airglow at magnetic zenith: theoretical considerations, Ann. Geophys., 23(1), 47-53, doi: 10.5194/angeo-23-47-2005.

Perkins, F. W., and Kaw, P. K. (1971), On the role of plasma instabilities in ionospheric heating by radio waves, J. Geophys. Res., 76(1), 282-284, doi: 10.1029/JA076i001p00282.

Peterson, V. L., VanZandt, T. E., and Norton, R. B. (1966), F-region nightglow emissions of atomic oxygen: 1. Theory, J. Geophys. Res., 71(9), 2255-2265, doi: 10.1029/JZ071i009p02255.

Rapoport, V. O., Frolov, V. L., Polyakov, S. V., Komrakov, G. P., Ryzhov, N. A., Markov, G. A., Belov, A. S., Parrot, M., and Rauch, J. L. (2010), VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility, J. Geophys. Res., 115(A10), A10332, doi: 10.1029/2010JA015484.

Rees, M. H. (1963), Auroral ionization and excitation by incident energetic electrons, Planet. Space Sci., 11(10), 1209-1218, doi: 10.1016/0032-0633(63)90252-6.

Sergienko, T., Gustavsson, B., Steen, Å., Brändström, U., Rietveld, M., Leyser, T. B., and Honary, F. (2000), Analysis of excitation of the 630.0 nm airglow during a heating experiment in Tromsø on February 16, 1999, Phys. Chem. Earth Part B Hydrol. Oceans Atmos., 25(5-6), 531-535, doi: 10.1016/S1464-1909(00)00059-9.

Sipler, D. P., and Biondi, M. A. (1972), Measurements of O (1D) quenching rates in the F region, J. Geophys. Res., 77(31), 6202-6212, doi: 10.1029/JA077i031p06202.

Sipler, D. P., Enemark, E., and Biondi, M. A. (1974), 6300-Å intensity variations produced by the Arecibo Ionospheric Modification Experiment, J. Geophys. Res., 79(28), 4276-4280, doi: 10.1029/JA079i028p04276.

Vlasov, M. N., Kelley, M. C., and Gerken, E. (2004), Impact of vibrational excitation on ionospheric parameters and artificial airglow during HF heating in the F region, J. Geophys. Res., 109(A9), A09304, doi: 10.1029/2003JA010316.

Vlasov, M. N., Nicolls, M. J., Kelley, M. C., Smith, S. M., Aponte, N., and González, S. A. (2005), Modeling of airglow and ionospheric parameters at Arecibo during quiet and disturbed periods in October 2002, J. Geophys. Res., 110(A7), A07303, doi: 10.1029/2005JA011074.

Wang, J. G., Newman, D. L., and Goldman, M. V. (1997), Vlasov simulations of electron heating by Langmuir turbulence near the critical altitude in the radiation-modified ionosphere, J. Atmos. Sol. Terr. Phys., 59(18), 2461-2474, doi: 10.1016/S1364-6826(96)00140-X.

Weinstock, J., and Bezzerides, B. (1974), Theory of electron acceleration during parametric instabilities, Phys. Rev. Lett., 32(14), 754-758, doi: 10.1103/PhysRevLett.32.754.

Weinstock, J., and Sleeper, A. M. (1975), Theory of enhanced ion and electron heating, and dissipation, due to ion acoustic turbulence, Phys. Fluids., 18(2), 247-250, doi: 10.1063/1.861110.

Wu, T. W., Huba, J. D., Joyce, G., and Bernhardt, P. A. (2012), Modeling Arecibo conjugate heating effects with SAMI2, Geophys. Res. Lett., 39(7), L07103, doi: 10.1029/2012GL051311.

Zawdie, K. A., Huba, J. D., and Wu, T. W. (2013), Modeling 3-D artificial ionospheric ducts, J. Geophys. Res., 118(11), 7450-7457, doi: 10.1002/2013JA018823.

Zawdie, K. A., and Huba, J. D. (2014), Can HF heating generate ESF bubbles?., Geophys. Res. Lett., 41(23), 8155-8160, doi: 10.1002/2014GL062293.

Zawdie, K. A., Huba, J. D., Drob, D. P., and Bernhardt, P. A. (2015), A coupled ionosphere-raytrace model for high-power HF heating, Geophys. Res. Lett., 42, 9650-9656, doi: 10.1002/2015GL066673.

[1]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[2]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[3]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[4]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 1-7. doi: 10.26464/epp2018022

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
Catalog

Figures And Tables

A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan