Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

2017, 1(1): 44-52. doi: 10.26464/epp2017006

A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating

1. 

CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Hefei 230026, China

3. 

Collaborative Innovation Center of Astronautical Science and Technology, Harbin 150001, China

4. 

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

5. 

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: JiuHou Lei, leijh@ustc.edu.cn

Received Date: 2017-07-25
Web Publishing Date: 2017-01-01

One of the important effects of the ionospheric modification by high-power waves is the airglow enhancement. Both the thermal electrons and the dissociation recombination contribute to generate the airglow emissions during HF heating. However, the relative importance of the airglow emission induced by dissociative recombination and thermal electrons has been rarely investigated. In this study, we carry out a simulation study on the airglow produced by high-power HF heating at nighttime associated with dissociative recombination and thermal electrons. SAMI2 (Sami2 is Another Model of the Ionosphere) is employed to simulate the ionospheric variations during the HF heating. The main conclusions from this study are as follows: (1) For the airglow induced by dissociative recombination, both 630.0 nm and 557.7 nm emissions show a decrease at the heating wave reflection height during the heating period, while when the heating is turned off, an increase is shown at lower altitudes. The reduction of airglow during the heating is caused by the rapid increase of electron temperature and the diffusion of plasmas dominates the after-heating airglow enhancement. (2) 630.0 nm emission due to thermal electrons is greatly enhanced at the wave reflection height, indicating that thermal electrons play a major role in exciting 630.0 nm emission. For the 557.7 nm emission, the excitation threshold (4.17 eV) is too high for thermal electrons. (3) The combined effect of dissociative recombination and thermal electrons could be the possible reason for the observed X-mode (extraordinary mode) suppression of 630.0 nm airglow during O-mode (ordinary mode) enhancement.

Key words: airglow, thermal electron, dissociative recombination, HF heating

Banks, P. M., Chappell, C. R., and Nagy, A. F. (1974), A new model for the interaction of auroral electrons with the atmosphere: Spectral degradation, backscatter, optical emission, and ionization, J. Geophys. Res., 79(10), 1459-1470, doi: 10.1029/JA079i010p01459

Bates, D. R. (1992), Nightglow emissions from oxygen in the lower thermosphere, Planet. Space Sci., 40(2), 211-221, doi: 10.1016/0032-0633(92)90059-W

Bernhardt, P. A., Duncan, L. M., and Tepley, C. A. (1988), Artificial airglow excited by high-power radio waves, Science, 242(4881), 1022-1027, doi: 10.1126/science.242.4881.1022

Bernhardt, P. A., Tepley, C. A., and Duncan, L. M. (1989), Airglow enhancements associated with plasma cavities formed during Ionospheric Heating Experiments, J. Geophys. Res., 94(A7), 9071-9092, doi: 10.1029/JA094iA07p09071

Biondi, A. A., Sipler, D. P., and Hake Jr, R. D. (1970), Optical (λ6300) detection of radio frequency heating of electrons in the F region, J. Geophys. Res., 75(31), 6421-6424, doi: 10.1029/JA075i031p06421

Brändström, B. U. E., Leyser, T. B., Steen, Å., Rietveld, M. T., Gustavsson, B., Aso, T., and Ejiri, M. (1999), Unambiguous evidence of HF pump-enhanced airglow at auroral latitudes, Geophys. Res. Lett., 26(23), 3561-3564, doi: 10.1029/1999GL010693

Djuth, F. T., Bernhardt, P. A., Tepley, C. A., Gardner, J. A., Kelley, M. C., Broadfoot, A. L., Kagan, L. M., Sulzer, M. P., Elder, J. H., Selcher, C., Isham, B., Brown, C., and Carlson, H. C. (1999), Large airglow enhancements produced via wave-plasma interactions in sporadic E. Geophys, Res. Lett., 26(11), 1557-1560, doi: 10.1029/1999GL900296

Djuth, F. T., Pedersen, T. R., Gerken, E. A., Bernhardt, P. A., Selcher, C. A., Bristow, W. A., and Kosch, M. J. (2005), Ionospheric modification at twice the electron cyclotron frequency, Phys. Rev. Lett., 94(12), 125001, doi: 10.1103/PhysRevLett.94.125001

Fallen, C. T., Secan, J. A., and Watkins, B. J. (2011), In-situ measurements of topside ionosphere electron density enhancements during an HF-modification experiment, Geophys. Res. Lett., 38(8), L08101, doi: 10.1029/2011GL046887

Gordon, W. E., and Carlson Jr, H. C. (1974), Arecibo heating experiments, Radio Sci., 9(11), 1041-1047, doi: 10.1029/RS009i011p01041

Grach, S. M. (1999), On kinetic effects in the ionospheric F-region modified by powerful radio waves, Radiophys. Quantum Electron., 42(7), 572-588, doi: 10.1007/bf02677563

Gurevich, A. V., Dimant, Y. S., Milikh, G. M., and Vas'kov, V. V. (1985), Multiple acceleration of electrons in the regions of high-power radio-wave reflection in the ionosphere, J. Atmos. Terr. Phys., 47(11), 1057-1070, doi: 10.1016/0021-9169(85)90023-6

Gurevich, A. V., and Milikh, G. M. (1997), Artificial airglow due to modifications of the ionosphere by powerful radio waves, J. Geophys. Res., 102(A1), 389-394, doi: 10.1029/96JA02916

Gurevich, A. V. (2007), Nonlinear effects in the ionosphere, Physics-Uspekhi, 50(11), 1091-1121, doi: 10.1070/PU2007v050n11ABEH006212

Gustavsson, B., Sergienko, T., Rietveld, M. T., Honary, F., Steen, A., Brändström, B. U. E., Leyser, T. B., Aruliah, A. L., Aso, T., Ejiri, M., and Marple, S. (2001), First tomographic estimate of volume distribution of HF-pump enhanced airglow emission, J. Geophys. Res., 106(A12), 29105-29123, doi: 10.1029/2000JA900167

Gustavsson, B., Brändström, B. U. E., Steen, Å., Sergienko, T., Leyser, T. B., Rietveld, M. T., Aso T., and Ejiri, M. (2002), Nearly simultaneous images of HF-pump enhanced airglow at 6300 Å and 5577 Å, Geophys. Res. Lett., 29(24), 73-1, doi: 10.1029/2002GL015350

Gustavsson, B., Sergienko, T., Häggström, I., Honary, F., and Aso, T. (2004), Simulation of high energy tail of electron distribution function, Adv. Polar Upper Atmos. Res., 18, 1-9.

Gustavsson, B., Sergienko, T., Kosch, M. J., Rietveld, M. T., Brändström, B. U. E., Leyser, T. B., Isham, B., Gallop, P., Aso, T., Ejiri, M., Grydeland, T., Steen, Å., LaHoz, C., Kaila, K., Jussila, J., and Holma, H. (2005), The electron energy distribution during HF pumping, a picture painted with all colors, Ann. Geophys., 23(5), 1747-1754, doi: 10.5194/angeo-23-1747-2005

Gustavsson, B., Newsome, R., Leyser, T. B., Kosch, M. J., Norin, L., McCarrick, M., Pedersen, T., and Watkins, B. J. (2009), First observations of X-mode suppression of O-mode HF enhancements at 6300 Å, Geophys. Res. Lett., 36(20), L20102, doi: 10.1029/2009GL039421

Hansen, J. D., Morales, G. J., and Maggs, J. E. (1989), Daytime saturation of thermal cavitons, J. Geophys. Res., 94(A6), 6833-6840, doi: 10.1029/JA094iA06p06833

Holma, H., Kaila, K. U., Kosch, M. J., and Rietveld, M. T. (2006), Recognizing the blue emission in artificial aurora, Adv. Space Res., 38(11), 2653-2658, doi: 10.1016/j.asr.2005.07.036

Huba, J. D., Joyce, G., and Fedder, J. A. (2000), Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 105(A10), 23035-23053, doi: 10.1029/2000ja000035

Kosch, M. J., Pedersen, T., Rietveld, M. T., Gustavsson, B., Grach, S. M., and Hagfors, T. (2005), Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: An observational review, Adv. Space Res., 40(3), 365-376, doi: 10.1016/j.asr.2007.02.061

Mantas, G. P. (1994), Large 6300-Å airglow intensity enhancements observed in Ionosphere Heating Experiments are excited by thermal electrons, J. Geophys. Res., 99(A5), 8993-9002, doi: 10.1029/94JA00347

Mantas, G. P., and Carlson, H. C. (1996), Reinterpretation of the 6300-Å airglow enhancements observed in ionosphere heating experiments based on analysis of Platteville, Colorado, data, J. Geophys. Res., 101(A1), 195-209, doi: 10.1029/95JA02760

Meltz, G., and F. W. Perkins (1974), Ionospheric modification theory: Past, present, and future, Radio Sci., 9(11), 885-888, doi: 10.1029/RS009i011p00885

Milikh, G. M., Papadopoulos, K., Shroff, H., Chang, C. L., Wallace, T., Mishin, E. V., Parrot, M., and Berthelier, J. J. (2008), Formation of artificial ionospheric ducts, Geophys. Res. Lett., 35(17), L17104, doi: 10.1029/2008GL034630

Milikh, G. M., Demekhov, A. G., Papadopoulos, K., Vartanyan, A., Huba, J. D., and Joyce, G. (2010a), Model for artificial ionospheric duct formation due to HF heating, Geophys. Res. Lett., 37(7), L07803, doi: 10.1029/2010GL042684

Milikh, G. M., Mishin, E., Galkin, I., Vartanyan, A., Roth, C., and Reinisch, B. W. (2010b), Ion outflows and artificial ducts in the topside ionosphere at HAARP, Geophys. Res. Lett., 37(18), L18102, doi: 10.1029/2010GL044636

Milikh, G. M., Demekhov, A., Vartanyan, A., Mishin, E. V., and Huba, J. (2012), A new model for formation of artificial ducts due to ionospheric HF-heating, Geophys. Res. Lett., 39(10), L10102, doi: 10.1029/2012GL051718

Mishin, E., Carlson, H. C., and Hagfors, T. (2000), On the electron distribution function in the F region and airglow enhancements during HF modification experiments, Geophys. Res. Lett., 27(18), 2857-2860, doi: 10.1029/2000GL000075

Mishin, E., Burke, W., and Pedersen, T. (2005), HF-induced airglow at magnetic zenith: theoretical considerations, Ann. Geophys., 23(1), 47-53, doi: 10.5194/angeo-23-47-2005

Perkins, F. W., and Kaw, P. K. (1971), On the role of plasma instabilities in ionospheric heating by radio waves, J. Geophys. Res., 76(1), 282-284, doi: 10.1029/JA076i001p00282

Peterson, V. L., VanZandt, T. E., and Norton, R. B. (1966), F-region nightglow emissions of atomic oxygen: 1. Theory, J. Geophys. Res., 71(9), 2255-2265, doi: 10.1029/JZ071i009p02255

Rapoport, V. O., Frolov, V. L., Polyakov, S. V., Komrakov, G. P., Ryzhov, N. A., Markov, G. A., Belov, A. S., Parrot, M., and Rauch, J. L. (2010), VLF electromagnetic field structures in ionosphere disturbed by Sura RF heating facility, J. Geophys. Res., 115(A10), A10332, doi: 10.1029/2010JA015484

Rees, M. H. (1963), Auroral ionization and excitation by incident energetic electrons, Planet. Space Sci., 11(10), 1209-1218, doi: 10.1016/0032-0633(63)90252-6

Sergienko, T., Gustavsson, B., Steen, Å., Brändström, U., Rietveld, M., Leyser, T. B., and Honary, F. (2000), Analysis of excitation of the 630.0 nm airglow during a heating experiment in Tromsø on February 16, 1999, Phys. Chem. Earth Part B Hydrol. Oceans Atmos., 25(5-6), 531-535, doi: 10.1016/S1464-1909(00)00059-9

Sipler, D. P., and Biondi, M. A. (1972), Measurements of O (1D) quenching rates in the F region, J. Geophys. Res., 77(31), 6202-6212, doi: 10.1029/JA077i031p06202

Sipler, D. P., Enemark, E., and Biondi, M. A. (1974), 6300-Å intensity variations produced by the Arecibo Ionospheric Modification Experiment, J. Geophys. Res., 79(28), 4276-4280, doi: 10.1029/JA079i028p04276

Vlasov, M. N., Kelley, M. C., and Gerken, E. (2004), Impact of vibrational excitation on ionospheric parameters and artificial airglow during HF heating in the F region, J. Geophys. Res., 109(A9), A09304, doi: 10.1029/2003JA010316

Vlasov, M. N., Nicolls, M. J., Kelley, M. C., Smith, S. M., Aponte, N., and González, S. A. (2005), Modeling of airglow and ionospheric parameters at Arecibo during quiet and disturbed periods in October 2002, J. Geophys. Res., 110(A7), A07303, doi: 10.1029/2005JA011074

Wang, J. G., Newman, D. L., and Goldman, M. V. (1997), Vlasov simulations of electron heating by Langmuir turbulence near the critical altitude in the radiation-modified ionosphere, J. Atmos. Sol. Terr. Phys., 59(18), 2461-2474, doi: 10.1016/S1364-6826(96)00140-X

Weinstock, J., and Bezzerides, B. (1974), Theory of electron acceleration during parametric instabilities, Phys. Rev. Lett., 32(14), 754-758, doi: 10.1103/PhysRevLett.32.754

Weinstock, J., and Sleeper, A. M. (1975), Theory of enhanced ion and electron heating, and dissipation, due to ion acoustic turbulence, Phys. Fluids., 18(2), 247-250, doi: 10.1063/1.861110

Wu, T. W., Huba, J. D., Joyce, G., and Bernhardt, P. A. (2012), Modeling Arecibo conjugate heating effects with SAMI2, Geophys. Res. Lett., 39(7), L07103, doi: 10.1029/2012GL051311

Zawdie, K. A., Huba, J. D., and Wu, T. W. (2013), Modeling 3-D artificial ionospheric ducts, J. Geophys. Res., 118(11), 7450-7457, doi: 10.1002/2013JA018823

Zawdie, K. A., and Huba, J. D. (2014), Can HF heating generate ESF bubbles?., Geophys. Res. Lett., 41(23), 8155-8160, doi: 10.1002/2014GL062293

Zawdie, K. A., Huba, J. D., Drob, D. P., and Bernhardt, P. A. (2015), A coupled ionosphere-raytrace model for high-power HF heating, Geophys. Res. Lett., 42, 9650-9656, doi: 10.1002/2015GL066673

[1]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[2]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[3]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[4]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[5]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[6]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[7]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan