<

Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009

2017, 1(1): 63-67. doi: 10.26464/epp2017009

A planetary perspective on Earth’s space environment evolution

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

College of Earth Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. 

Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: Yong Wei, weiy@mail.iggcas.ac.cn

Received Date: 2017-07-30
Web Publishing Date: 2017-10-01

The planet Earth is an integrated system, in which its multi-spheres are coupled, from the space to the inner core. Whether the space environment in short to long terms has been controlled by the earth’s interior process is contentious. In the past several decades, space weather and space climate have been extensively studied based on either observation data measured directly by man-made instruments or ancient data inferred indirectly from some historical medium of past thousands of years. The acquired knowledge greatly helps us to understand the dynamic processes in the space environment of modern Earth, which has a strong magnetic dipole and an oxygen-rich atmosphere. However, no data is available for ancient space weather and climate (>5 ka). Here, we propose to take the advantage of " space-diversity” to build a " generalized planetary space family”, to reconcile the ancient space environment evolution of planet Earth from modern observations of other planets in our solar system. Such a method could also in turn give us a valuable insight into other planets’ evolution.

Key words: space environment evolution, space weather, generalized planetary space family, space diversity

Biggin, A. J., Piispa, E. J., Pesonen, L. J., Holme, R., Paterson, G. A., Veikkolainen, T., and Tauxe, L. (2015), Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation, Nature, 526(7572), 245-248, doi: 10.1038/nature15523. doi: 10.1038/nature15523.

Cade, W. B., III, and Chan-Park, C. (2015), The origin of " Space Weather,” Space Wea., 13(2), 99-103, doi: 10.1002/2014SW001141. doi: 10.1002/2014SW001141.

Catling, D. C., Zahnle, K. J., and McKay, C. P. (2001), Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth, Science, 293(5531), 839-843, 10.1126/science.1061976.

Kasting, J. F. (1993), Earth's early atmosphere, Science, 259(5097), 920-926, doi: 10.1126/science.11536547. doi: 10.1126/science.11536547.

Keeling, C. D., Whorf, T. P., Wahlen, M., and van der Plicht, J. (1995), Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature, 375(6533), 666-670, doi: 10.1038/375666a0. doi: 10.1038/375666a0.

Korte, M., Constable, C., Donadini, F., and Holme, R. (2011), Reconstructing the Holocene geomagnetic field, Earth Planet Sci. Lett., 312(3-4), 497-505, doi: 10.1016/j.jpgl.2011.10.031. doi: 10.1016/j.jpgl.2011.10.031.

Lammer, H., Kasting, J. F., Chassefière, E., Johnson, R. E., Kulikov, Y. N., and Tian, F. (2008), Atmospheric escape and evolution of terrestrial planets and satellites, Space Sci. Rev., 139(1-4), 399-436, doi: 10.1007/s11214-008-9413-5. doi: 10.1007/s11214-008-9413-5.

Laštovička, J., Akmaev, R. A., Beig, G., Bremer, J., and Emmert, J. T. (2006), Global change in the upper atmosphere, Science, 314(5803), 1253-1254, doi: 10.1126/science.1135134. doi: 10.1126/science.1135134.

Lundin, R., Lammer, H., and Ribas, I. (2007), Planetary magnetic fields and solar forcing: implications for atmospheric evolution, Space Sci. Rev., 129(1-3), 245-278, doi: 10.1007/s11214-007-9176-4. doi: 10.1007/s11214-007-9176-4.

Lyons, T. W., Reinhard, C. T., and Planavsky, N. J. (2014), The rise of oxygen in Earth’s early ocean and atmosphere, Nature, 506(7488), 307-315, doi: 10.1038/nature13068. doi: 10.1038/nature13068.

Merrill, R. T., and McFadden, P. L. (1999), Geomagnetic polarity transitions, Rev. Geophys., 37(2), 201-226, doi: 10.1029/1998RG900004. doi: 10.1029/1998RG900004.

Mursula, K., Usoskin, I. G., and Maris, G. (2007), Introduction to space climate, Adv. Space Res., 40(7), 885-887, doi: 10.1016/j.asr.2007.07.046. doi: 10.1016/j.asr.2007.07.046.

Qian, L. Y., Laštovička, J., Roble, R. G., and Solomon, S. C. (2011), Progress in observations and simulations of global change in the upper atmosphere, J. Geophys. Res., 116(A2), A00H03, doi: 10.1029/2010JA016317. doi: 10.1029/2010JA016317.

Roble, R. G., and Dickinson, R. E. (1989), How will changes in carbon dioxide and methane modify the mean structure of the mesosphere and thermosphere?, Geophys. Res. Lett., 16(12), 1441-1444, doi: 10.1029/GL016i012p01441. doi: 10.1029/GL016i012p01441.

Schunk, R. W., and Sojka, J. J. (1996). Ionospheric models. In H. Kohl, et al. (Eds.), Modern Ionospheric Science. European Geophysical Society, Germany

Smith, E. J., Davis Jr, L., Coleman Jr, P. J., and Jones, D. E. (1965), Magnetic field measurements near mars, Science, 149(3689), 1241-1242, doi: 10.1126/science.149.3689.1241. doi: 10.1126/science.149.3689.1241.

Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., and Beer, J. (2004), Unusual activity of the Sun during recent decades compared to the previous 11,000 years, Nature, 431(7012), 1084-1087, doi: 10.1038/nature02995. doi: 10.1038/nature02995.

Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F., and Bono, R. K. (2015), A Hadean to Paleoarchean geodynamo recorded by single zircon crystals, Science, 349(6247), 521-524, doi: 10.1126/science.aaa9114. doi: 10.1126/science.aaa9114.

Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A. M., Fournier, A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W. J., Lalanne, X., Langlais, B., Léger, J. M., Lesur, V., Lowes, F. J., Macmillan, S., Mandea, M., Manoj, C., Maus, S., Olsen, N., Petrov, V., Ridley, V., Rother, M., Sabaka, T. J., Saturnino, D., Schachtschneider, R., Sirol, O., Tangborn, A., Thomson, A., Tøffner-Clausen, L., Vigneron, P., Wardinski, I., and Zvereva, T. (2015), International geomagnetic reference field: the 12th generation, Earth Planet Space, 67, 79, doi: 10.1186/s40623-015-0228-9. doi: 10.1186/s40623-015-0228-9.

Tomkins, A. G., Bowlt, L., Genge, M., Wilson, S. A., Brand, H. E. A., and Wykes, J. L. (2016), Ancient micrometeorites suggestive of an oxygen-rich Archaean upper atmosphere, Nature, 533(7602), 235-238, doi: 10.1038/nature17678. doi: 10.1038/nature17678.

Wang, H., Zhang, J., Lühr, H., and Wei, Y. (2017), Longitudinal modulation of electron and mass densities at middle and auroral latitudes: Effect of geomagnetic field strength, J. Geophys. Res.: Space Phys., 122(6), 6595-6610, doi: 10.1002/2016JA023829. doi: 10.1002/2016JA023829.

Wei, Y., Fraenz, M., Dubinin, E., Woch, J., Lühr, H., Wan, W., Zong, Q.-G., Zhang, T. L., Pu, Z. Y., Fu, S. Y., Barabash, S., Lundin, R., and Dandouras, I. (2012a), Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region, J. Geophys. Res.: Space Phys., 117(A3), A03208, doi: 10.1029/2011JA017340. doi: 10.1029/2011JA017340.

Wei, Y., Fraenz, M., Dubinin, E., Coates, A. J., Zhang, T. L., Wan, W., Feng, L., Angsmann, A., Opitz, A., Woch, J., Barabash, S., and Lunding, R. (2012b), A teardrop-shaped ionosphere at Venus in tenuous solar wind, Planet. Space Sci., 73(1), 254-261, doi: 10.1016/j.pss.2012.08.024. doi: 10.1016/j.pss.2012.08.024.

Wei, Y., Pu, Z. Y., Zong, Q.-G., Wan, W. X., Ren, Z. P., Fraenz, M., Dubinin, E., Tian, F., Shi, Q. Q., Fu, S. Y., and Hong, M. H. (2014), Oxygen escape from the Earth during geomagnetic reversals: Implications to mass extinction, Earth Planet. Sci. Lett., 394, 94-98, doi: 10.1016/j.jpgl.2014.03.018. doi: 10.1016/j.jpgl.2014.03.018.

Yue, X. A., Liu, L. B., Wan, W. X., Wei, Y., and Ren, Z. P. (2008), Modeling the effects of secular variation of geomagnetic field orientation on the ionospheric long term trend over the past century, J. Geophys. Res.: Space Phys., 113(A10), A10301, doi: 10.1029/2007JA012995. doi: 10.1029/2007JA012995.

[1]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[2]

WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001

[3]

Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
Catalog

Figures And Tables

A planetary perspective on Earth’s space environment evolution

Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu