Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

2018, 2(1): 15-21. doi: 10.26464/epp2018002

PLANETARY SCIENCE

First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China

3. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

4. 

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: GuoZhu Li, gzlee@mail.iggcas.ac.cn

Received Date: 2017-10-21
Web Publishing Date: 2018-12-01

Meteoroids entering the Earth's atmosphere can create meteor trail irregularity seriously disturbing the background ionosphere. Although numerous observations of meteor trail irregularities were performed with VHF/UHF coherent scatter radars in the past, no simultaneous radar and optical instruments were employed to investigate the characteristics of meteor trail irregularity and its corresponding meteoroid. By installing multiple video cameras near the Sanya VHF radar site, an observational campaign was conducted during the period from November 2016 to February 2017. A total of 242 optical meteors with simultaneous non-specular echoes backscattered from the plasma irregularities generated in the corresponding meteor trails were identified. A good agreement between the angular positions of non-specular echoes derived from the Sanya radar interferometer and those of optical meteors was found, validating that the radar system phase offsets have been properly calibrated. The results also verify the interferometry capability of Sanya radar for meteor trail irregularity observation. The non-specular echoes with simultaneous optical meteors were detected at magnetic aspect angles greater than ~78°. Based on the meteor visual magnitude estimated from the optical data, it was found that the radar non-specular echoes corresponding to brighter meteors survived for longer duration. This could provide observational evidence for the significance of meteoroid mass on the duration of meteor trail irregularity. On the other hand, the simultaneous radar and video common-volume observations showed that there were some cases with optical meteors but without radar non-specular echoes. One possibility could be that some of the optical meteors appeared at extremely low altitudes where meteor trail irregularities rarely occur.

Key words: meteor, ionosphere, radar, non-specular echo

Bourdillon, A., Haldoupis, C., Hanuise, C., Le Roux, Y., and Menard, J. (2005). Long duration meteor echoes characterized by Doppler spectrum bifurcation. Geophys. Res. Lett., 32, L05805. https://doi.org/10.1029/2004GL021685. doi: 10.1029/2004GL021685

Campbell-Brown, M. D., Kero, J., Szasz, C., Pellinen-Wannberg, A., and Weryk, R. J. (2012). Photometric and ionization masses of meteors with simultaneous EISCAT UHF radar and intensified video observations. J. Geophys. Res., 117, A09323. https://doi.org/10.1029/2012JA017800. doi: 10.1029/2012JA017800

Ceplecha, Z., Borovička, J., Elford, W. G., Revelle, D. O., Hawkes, R. L., Porubčan, V., and Šimek, M. (1998), Meteor phenomena and bodies. Space Sci. Rev., 84, 327–471. https://doi.org/10.1023/A:1005069928850. doi: 10.1023/A:1005069928850

Chapin, E., and Kudeki, E. (1994). Radar interferometric imaging studies of long-duration meteor echoes observed at Jicamarca. J. Geophys. Res., 99, 8937–8949. https://doi.org/10.1029/93JA03198. doi: 10.1029/93JA03198

Chau, J. L., Strelnikova, I., Schult, C., Oppenheim, M. M., Kelley, M. C., Stober, G., and Singer, W. (2014). Nonspecular meteor trails from non-field-aligned irregularities: Can they be explained by presence of charged meteor dust?. Geophys. Res. Lett., 41, 3336–3343. https://doi.org/10.1002/2014GL059922. doi: 10.1002/2014GL059922

Chu, Y. H., and Wang, C. Y. (2003). Interferometry observations of VHF backscatter from plasma irregularities induced by meteor in sporadic E region. Geophys. Res. Lett., 30(24), 2239. https://doi.org/10.1029/2003GL017703. doi: 10.1029/2003GL017703

Close, S., Hamlin, T., Oppenheim, M., Cox, L., and Colestock, P. (2008). Dependence of radar signal strength on frequency and aspect angle of nonspecular meteor trails. J. Geophys. Res., 113, A06203. https://doi.org/10.1029/2007JA012647. doi: 10.1029/2007JA012647

Dou, X.-K., Xue, X.-H., Li, T., Chen, T.-D., Chen, C., and Qiu, S.-C. (2010). Possible relations between meteors, enhanced electron density layers, and sporadic sodium layers. J. Geophys. Res., 115, A06311. https://doi.org/10.1029/2009JA014575. doi: 10.1029/2009JA014575

Dyrud, L. P., Kudeki, E., and Oppenheim, M. M. (2007). Modeling long duration meteor trails. J. Geophys. Res., 112, A12307. https://doi.org/10.1029/2007JA012692. doi: 10.1029/2007JA012692

Hawkes, R. L., Bussey, J. E., Macphee, S. L., Pollock, C. S., and Taggart, L. W. (2001). Techniques for high resolution meteor light curve investigations. In B. Warmbein, (Ed.), Proceedings of the Meteoroids 2001 Conference (pp. 281–286). Noordwijk: ESA Publications222

Kelley, M. (2004). A new explanation for long-duration meteor radar echoes: Persistent charged dust trains. Radio Sci., 39, RS2015. https://doi.org/10.1029/2003RS002988. doi: 10.1029/2003RS002988

Kikwaya, J-B, Weryk, R. J., Campbell-Brown, M., and Brown, P.G. (2010). A model for saturation correction in meteor photometry. Mon. Not. Roy. Astron. Soc., 404, 387–398. https://doi.org/10.1111/j.1365-2966.2010.16294.x. doi: 10.1111/j.1365-2966.2010.16294.x

Li, G. Z., Ning, B. Q., Patra, A. K., Wan, W. X., and Hu, L. (2011). Investigation of low-latitude E and valley region irregularities: Their relationship to equatorial plasma bubble bifurcation. J. Geophys. Res., 116, A11319. https://doi.org/10.1029/2011JA016895. doi: 10.1029/2011JA016895

Li, G. Z., Ning, B. Q., Hu, L. H., Chu, Y.-H., Reid, I. M., and Dolman, B. K. (2012). A comparison of lower thermospheric winds derived from range spread and specular meteor trail echoes. J. Geophys. Res., 117, A03310. https://doi.org/10.1029/2011JA016847. doi: 10.1029/2011JA016847

Li, G. Z., Ning, B. Q., Chu, Y.-H., Reid, I. M., Hu, L., Dolman, B. K., Xiong, J., Jiang, G., Yang, G., and Yan, C. (2014a). Structural evolution of long-duration meteor trail irregularities driven by neutral wind. J. Geophys. Res. Space Phys., 119, 10348–10357. https://doi.org/10.1002/2014JA020116. doi: 10.1002/2014JA020116

Li, G. Z., Ning, B. Q., and Hu, L. (2014b). Interferometry observations of low-latitude E-region irregularity patches using the Sanya VHF radar. Sci. China Technol. Sci., 57, 1552–1561. https://doi.org/10.1007/s11431-014-5592-3. doi: 10.1007/s11431-014-5592-3

Li, G. Z., Ning, B. Q., Wan, W. X., Reid, I. M., Hu, L. H., Yue, X. N., Younger, J. P., and Dolman, B. K. (2014c). Observational evidence of high-altitude meteor trail from radar interferometer. Geophys. Res. Lett., 41, 6583–6589. https://doi.org/10.1002/2014GL061478. doi: 10.1002/2014GL061478

Li, G. Z., Ning, B. Q., Liu, L. B., Abdu, M. A., Wan, W. X., and Hu, L. H. (2015). Shear in the zonal drifts of 3 m irregularities inside spread F plumes observed over Sanya. J. Geophys. Res. Space Phys., 120, 8146–8154. https://doi.org/10.1002/2015JA021497. doi: 10.1002/2015JA021497

Li, G. Z., Otsuka, Y., Ning, B. Q., Abdu, M. A., Yamamoto, M., Wan, W. X., Liu, L. B., and Abadi, P. (2016). Enhanced ionospheric plasma bubble generation in more active ITCZ. Geophys. Res. Lett., 43, 2389–2395. https://doi.org/10.1002/2016GL068145 doi: 10.1002/2016GL068145

Malhotra, A., Mathews, J. D., and Urbina, J. (2007). A radio science perspective on long-duration meteor trails. J. Geophys. Res., 112, A12303. https://doi.org/10.1029/2007JA012576. doi: 10.1029/2007JA012576

Maruyama, T., Kato, H. and Nakamura, M. (2008). Meteor-induced transient sporadic E as inferred from rapid-run ionosonde observations at midlatitudes. J. Geophys. Res., 113, A09308. https://doi.org/10.1029/2008JA013362. doi: 10.1029/2008JA013362

Mathews, J. D., Meisel, D. D., Hunter, K. P., Getman, V. S., and Zhou, Q. (1997). Very high resolution studies of micrometeors using the Arecibo 430 MHz radar. Icarus, 126(1), 157–-169. https://doi.org/10.1006/icar.1996.5641. doi: 10.1006/icar.1996.5641

Myers, J. R., Sande, C. B., Miller, A. C., Warren, W. H., and Tracewell, D. A. (2001). Sky 2000 Catalog v4. Goddard Space Flight Center, Ycat 5109.222

Ning, B. Q., Hu, L. H., Li, G. Z., Liu, L. B., and Wan, W. X. (2012). The first time observations of low-latitude ionospheric irregularities by VHF radar in Hainan. Sci. China Technol. Sci., https://doi.org/10.1007/s11431-012-4800-2. doi: 10.1007/s11431-012-4800-2

Oppenheim, M. M., and Dimant, Y. (2006). Meteor induced ridge and trough formation and the structuring of the nighttime E-region ionosphere. Geophys. Res. Lett., 33, L24105. https://doi.org/10.1029/2006GL028267. doi: 10.1029/2006GL028267

Oppenheim, M. M., Sugar, G., Slowey, N. O., Bass, E., Chau, J. L., and Close, S. (2009). Remote sensing lower thermosphere wind profiles using non-specular meteor echoes. Geophys. Res. Lett., 36, L09817. https://doi.org/10.1029/2009GL037353. doi: 10.1029/2009GL037353

Oppenheim, M. M., and Dimant, Y. S. (2015). First 3-D simulations of meteor plasma dynamics and turbulence. Geophys. Res. Lett., 42, 681–687. https://doi.org/10.1002/2014GL062411. doi: 10.1002/2014GL062411

Reid, I. M. (2015). MF and HF radar techniques for investigating the dynamics and structure of the 50 to 110 km height region: a review. Progress Earth Planetary Sci., https://doi.org/10.1186/s40645-015-0060-7. doi: 10.1186/s40645-015-0060-7

Sugar, G., Oppenheim, M. M., Bass, E., and Chau, J. L. (2010). Nonspecular meteor trail altitude distributions and durations observed by a 50 MHz high-power radar. J. Geophys. Res., 115, A12334, https://doi.org/10.1029/2010JA015705. doi: 10.1029/2010JA015705

Zhou, Q. H., Mathews, J. D., and Nakamura, T. (2001). Implications of meteor observations by the mu radar. Geophys. Res. Lett., 28, 1399–1402. https://doi.org/10.1029/2000GL012504. doi: 10.1029/2000GL012504

[1]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[2]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan