Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

2018, 2(1): 40-51. doi: 10.26464/epp2018004

ATMOSPHERIC PHYSICS

Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape

1. 

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. 

State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, China

3. 

National Demonstration Center for Experimental Atmospheric Science and Environmental Meteorology Education, Nanjing University of Information Science & Technology, Nanjing 210044, China

4. 

Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Corresponding author: JinHu Wang, goldtigerwang@nuist.edu.cn

Received Date: 2017-09-13
Web Publishing Date: 2018-01-01

Two assumptions are typically made when radar echo signals from precipitation are analyzed to determine the micro-physical parameters of raindrops: (1) the raindrops are assumed to be spherical; (2) multiple scattering effects are ignored. Radar cross sections (RCS) are usually calculated using Rayleigh's scattering equation with the simple addition method in the radar meteorological equation. We investigate the extent to which consideration of the effects of multiple scattering and of the non-spherical shapes within actual raindrop swarms would result in RCS values significantly different from those obtained by conventional analytical methods. First, we establish spherical and non-spherical raindrop models, with Gamma, JD, JT, and MP size distributions, respectively. We then use XFDTD software to calculate the radar cross sections of the above raindrop models at the S, C, X and Ku radar bands. Our XFDTD results are then compared to RCS values calculated by the Rayleigh approximation with simple addition methods. We find that: (1) RCS values calculated using multiple scattering XFDTD software differ significantly from those calculated by the simple addition method at the same band for the same model. In particular, for the spherical raindrop models, the relative differences in RCS values between the methods range from a maximum of 89.649% to a minimum of 43.701%; for the non-spherical raindrop models, the relative differences range from a maximum of 85.868% to a minimum of 11.875%. (2) Our multiple scattering XFDTD results, compared to those obtained from the Rayleigh formula, again differ at all four size distributions, by relative errors of 169.522%, 37.176%, 216.455%, and 63.428%, respectively. When nonspherical effects are considered, differences in RCS values between our XFDTD calculations and Rayleigh calculations are smaller; at the above four size distributions the relative errors are 0.213%, 0.171%, 7.683%, and 44.514%, respectively. RCS values computed by considering multiple scattering and non-spherical particle shapes are larger than Rayleigh RCS results, at all of the above four size distributions; the relative errors between the two methods are 220.673%, 129.320%, 387.240%, and 186.613%, respectively. After changing the arrangement of particles at four size distributions in the case of multiple scattering effect and non-spherical effect, the RCS values of Arrangement 2 are smaller than those of Arrangement 1; the relative errors for Arrangement 2, compared to Rayleigh, are 60.558%, 76.263%, 85.941%, 64.852%, respectively. We have demonstrated that multiple scattering, non-spherical particle shapes, and the arrangement within particle swarms all affect the calculation of RCS values. The largest influence appears to be that of the multiple scattering effect. Consideration of particle shapes appears to have the least influence on computed RCS values. We conclude that multiple scattering effects must be considered in practical meteorological detection.

Key words: Finite difference time domain (FDTD), generalized Lorenz Mie theory, raindrops, RCS, multiple scattering, oblate ellipsoid particle

Atlas, D., Kerker, M., and Hitschfeld, W. (1953). Scattering and attenuation by non-spherical atmospheric particles. J. Atmos. Terr. Phys., 3(2), 108–119. https://doi.org/10.1016/0021-9169(53)90093-2 doi: 10.1016/0021-9169(53)90093-2

Atlas, D., Srivastava, R. C., and Sekhon, R. S. (1973). Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys., 11(1), 1–35. https://doi.org/10.1029/RG011i001p00001 doi: 10.1029/RG011i001p00001

Bai, J. J., Li, Y., and Zhao, B. (2017). Directional light scattering from individual Au nanocup. Opt. Commun., 387, 208–213. https://doi.org/10.1016/j.optcom.2016.11.062 doi: 10.1016/j.optcom.2016.11.062

Bruscaglioni, P., Ismaelli, A. and Zaccanti, G. (1995). Monte-Carlo calculations of LIDAR returns: Procedure and results. Appl. Phys. B, 60(4), 325–329. https://doi.org/10.1007/BF01082266 doi: 10.1007/BF01082266

Chen, M. X., Yu, X. D., Tan, X. G., and Wang, Y. C. (2004). A brief review on the development of nowcasting for convective storms. J. Appl. Meteor. Sci. (in Chinese), 15(6), 754–766. https://doi.org/10.3969/j.issn.1001-7313.2004.06.015

Draine, B. T., and Flatau, P. J. (1994). Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A, 11(4), 1491–1499. https://doi.org/10.1364/JOSAA.11.001491 doi: 10.1364/JOSAA.11.001491

Eremin, J. A., Orlov, N. V., and Rozenberg, V. I. (1995). Multiple electromagnetic scattering by a linear array of electrified raindrops. J. Atmos. Terr. Phys., 57(3), 311–319. https://doi.org/10.1016/0021-9169(94)P4361-2 doi: 10.1016/0021-9169(94)P4361-2

Konoshonkin, A. V., Kustova, N. V. Shishko, V. A., and Borovoi, A. G. (2016). The technique for solving the problem of light backscattering by ice crystals of cirrus clouds by the physical optics method for a Lidar with zenith scanning. Atmos. Oceanic Opt., 29(3), 252–262. https://doi.org/10.1134/S1024856016030088 doi: 10.1134/S1024856016030088

Kunkel, K. E., and Weinman, J. A. (1976). Monte Carlo analysis of multiply scattered Lidar returns. J. Atmos. Sci., 33(9), 1772–1781. https://doi.org/10.1175/1520-0469(1976)033<1772:MCAOMS>2.0.CO;2 doi: 10.1175/1520-0469(1976)033<1772:MCAOMS>2.0.CO;2

Li, S. H., Sun, X. M, Wang, H. H., and Lei, C. X. (2014). Study on electromagnetic wave scattering by raindrops. J. Light Scattering (in Chinese), 26(1), 1–7. https://doi.org/10.3969/j.issn.1004-5929.2014.01.001 (请核对刊名缩写是否正确)

Li, Y. Y., Sun, D. S., Wang, Z. Z., Shen, F. H., Zhou, X. L., and Dong, J. J. (2008). Study of clouds multiple-scattering influence on Lidar measurement. Laser Technol. (in Chinese), 32(6), 611–613, 638.

Liu C., Bi, L., Lee Panetta, R., Yang, P., and Yurkin, M. A. (2012a). Comparison between the pseudo-spectral time domain method and the discrete dipole approximation for light scattering simulations. Opt. Express, 20(15), 16763–16776. https://doi.org/10.1364/OE.20.016763 doi: 10.1364/OE.20.016763

Liu, C., Lee Panetta, R., and Yang, P. (2012b). Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200. J. Quant. Spectrosc. Radiat. Transfer, 113(13), 1728–1740. https://doi.org/10.1016/j.jqsrt.2012.04.021 doi: 10.1016/j.jqsrt.2012.04.021

Liu, L. P., and Xu, B. X. (1991). A study of scattering and attenuation properties of model hail with different phase at 5.6 cm wavelength. Plateau Meteor. (in Chinese), 10(1), 26–33.

Liu, X. C., Gao, T. C., Qin, J., and Liu, L. (2010). Effects analysis of rainfall on microwave transmission characteristics. Acta Phys. Sin. (in Chinese), 59(3), 2156–2162.

Liu, X. C., Gao, T. C., Liu, L., and Hu, S. (2013). Advances in microphysical features and measurement techniques of raindrops. Adv. Earth Sci. (in Chinese), 28(11), 1217–1226.

Loiko, V. A., Konkolovich, A. V., Zyryanov, V. Y., and Miskevich, A. A. (2017). Small-angle light scattering symmetry breaking in polymer-dispersed liquid crystal films with inhomogeneous electrically controlled interface anchoring. J. Exp. Theor. Phys., 124(3), 388–405. https://doi.org/10.1134/S1063776117020133 doi: 10.1134/S1063776117020133

Mason, B. J. (1979). The Physics of Clouds (in Chinese) (pp. 343–345). The Institute of Atmospheric Physics, Chinese Academy of Sciences, trans. Beijing: Science Press.222

Mätzler, C. (2002). Drop-size distributions and Mie computations for rain. Research Report No.16. Switzerland: Institute of Applied Physics, University of Bern.222

Mishchenko, M. I. (1993). Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength. Appl. Opt., 32(24), 4652–4666. https://doi.org/10.1364/AO.32.004652 doi: 10.1364/AO.32.004652

Mishchenko, M. I., Travis, L. D. and Mackowski, D. W. (1996). T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiant. Transfer, 55(5), 535–575. https://doi.org/10.1016/0022-4073(96)00002-7 doi: 10.1016/0022-4073(96)00002-7

Mishchenko, M. I., Hovenier, J. W., and Travis, L. D. (2000). Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications. New York: Academic Press.222

Mooradian, G. C., Geller, M., Levine, P. H., Stotts, L. B., and Stephens, D. H. (1980). Over-the-horizon optical propagation in a maritime environment. Appl. Opt., 19(1), 11–30. https://doi.org/10.1364/AO.19.000011 doi: 10.1364/AO.19.000011

Platt, C. M. R., and Dilley, A. C. (1984). Determination of the cirrus particle single-scattering phase function from Lidar and solar radiometric data. Appl. Opt., 23(3), 380–386. https://doi.org/10.1364/AO.23.000380 doi: 10.1364/AO.23.000380

Pruppacher, H. R., and Beard, K. V. (1970). A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air. Quart. J. Roy. Meteor. Soc., 96(408), 247–256. https://doi.org/10.1002/qj.49709640807 doi: 10.1002/(ISSN)1477-870X

Pruppacher, H. R., and Pitter, R. L. (1971). A semi-empirical determination of the shape of cloud and rain drops. J. Atmos. Sci., 28(1), 86–94. https://doi.org/10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2 doi: 10.1175/1520-0469(1971)028<0086:ASEDOT>2.0.CO;2

Seliga, T. A., and Bringi, V. N. (1978). Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 13(2), 271–275. https://doi.org/10.1029/RS013i002p00271 doi: 10.1029/RS013i002p00271

Spinhirne, J. D. (1982). Lidar clear atmosphere multiple scattering dependence on receiver range. Appl. Opt., 21(14), 2467–2468. https://doi.org/10.1364/AO.21.002467 doi: 10.1364/AO.21.002467

Taflove, A. (1998). Advances in Computational Electrodynamics. Boston, MA: Artech House.222

Taflove, A., and Hagness, S. C. (2000). Computational Electrodynamics. Boston, MA: Artech House.222

Wang, G. L., Liu, L. P., and Ruan, Z. (2007). Application of Doppler radar data to nowcasting of heavy rainfall. J. Appl. Meteor. Sci. (in Chinese), 18(3), 388–395.

Wang, J. H., Ge, J. X., Wei, M., and Yu, W. W. (2013). Influence of scattering properties due to complex refractive index of ice. In Proceedings of the 3rd International Conference on Information Science and Technology (pp. 997–999). Yangzhou, Jiangsu, China: IEEE. https://doi.org/10.1109/ICIST.2013.6747704222

Wang, J. H., Ge, J. X., and Wei, M. (2014). Theoretical study on single-scattering properties of ice particles of different orientation at 94 GHz. Prog. Electromagn. Res. M, 36, 39–46. https://doi.org/10.2528/PIERM14033106 doi: 10.2528/PIERM14033106

Wang, J. H., Ge, J. X., Zhang, Q. L., Li, X. C., Wei, M., Yang, Z. X., and Liu, Y. A. (2016a). Radar cross-section measurements of ice particles using vector network analyzer. AIP Adv., 6(9), 095310. http://doi.org/10.1063/1.4963080 doi: 10.1063/1.4963080

Wang, J. H., Ge, J. X., Zhu, X., Wei, M., Yang, Z. X., and Li, J. Q. (2016b). Effect of orientation and air content of ice particles on radar reflectivity factor. J. Infrared Millim. Waves (in Chinese), 35(1), 78–86. https://doi.org/10.11972/j.issn.1001-9014.2016.01.015

Wang, J. H., Ge, J. X., Wei, M., Gu, S. S., and Yang, Z. X. (2016c). Study of the relationship between IWC and Z for nonspherical ice particles at millimeter wavelength. J. Trop. Meteor., 22(S1), 78–88.

Wang, K., Do, K. D., and Cui, L. (2017). Underwater active electrosense: A scattering formulation and its application. IEEE Trans. Rob., 33(5), 1233–1241. https://doi.org/10.1109/TRO.2017.2694829 doi: 10.1109/TRO.2017.2694829

Wang, Z. H., (2002). Study on backscattering experiment and DDA calculation of spherical cone ellipsoid. Journal of Nanjing Institute of Meteorology, 25 (3): 307-313.

Wang, Z. H., Xu, X. Y., Wang, Q. A., and Chao, Z. M. (2003). Comparison between the lab observations and DDA computations on the backscattering features of sphere-cone-oblate ice particles. J. Quant. Spectrosc. Radiat. Transfer, 77(4), 455–462. https://doi.org/10.1016/S0022-4073(02)00165-6 doi: 10.1016/S0022-4073(02)00165-6

Xiong, X. L., Li, M., Jiang, L. H., Feng, S., and Zhuang, Z. B. (2014). The study of the Lidar ratio retrieval method with multiple scattering cirrus cloud. J. Optoelectron. Laser (in Chinese), 25(6), 1158–1164.

Wu, J. X., Wei, M., Zhou, J., and Wang, J. H. (2012). Effects of temperature and orientation on 3.2 mm radar backscattering from ice crystals. In Proceedings of the 5th International Conference on Advanced Computational Intelligence (pp. 742–746). Nanjing, China: IEEE. https://doi.org/10.1109/ICACI.2012.6463266222

Xu, L. S., Chen, H. B., Ding, J. L., and Xia, Z. Y. (2014). An overview of the advances in computational studies on light scattering by nonspherical particles. Adv. Earth Sci. (in Chinese), 29(8), 903–912. https://doi.org/10.11867/j.issn.1001-8166.2014.08.0903

Xu, X. Y. (2002). Scattering of microwaves by non-spherical raindrops and hails (in Chinese). Nanjing: Nanjing University of Information Engineering, [Master’s thesis].222

Xu, Y. L. (1995). Electromagnetic scattering by an aggregate of spheres. Appl. Opt., 34(21), 4573–4588. https://doi.org/10.1364/AO.34.004573 doi: 10.1364/AO.34.004573

Xu, Y. L., and Gustafson, B. Å. S. (1997). Experimental and theoretical results of light scattering by aggregates of spheres. Appl. Opt., 36(30), 8026–8030. https://doi.org/10.1364/AO.36.008026 doi: 10.1364/AO.36.008026

Yang, P., and Liou, K. N., (1996). Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space. J. Opt. Soc. Am. A, 13(10), 2072–2085. https://doi.org/10.1364/JOSAA.13.002072 doi: 10.1364/JOSAA.13.002072

Yee, S. (1996). Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag., 14(3), 302–307. https://doi.org/10.1109/TAP.1966.1138693

Zhang, P. C., and Wang, Z. H. (1995). Analysis of Atmospheric Microwave Remote Sensing (in Chinese). Beijing: Meteorological Press,16–19.222

Zhong, L. Z., Liu, L. P., and Ge, R. S. (2009). Characteristics about the millimeter-wavelength radar and its status and prospect in and abroad. Adv. Earth Sci. (in Chinese), 24(4), 383–391. https://doi.org/10.3321/j.issn:1001-8166.2009.04.004

[1]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[2]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen