Citation: Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

2018, 2(1): 52-66. doi: 10.26464/epp2018005

SOLID EARTH: GEODYNAMICS

Thermal structures of the Pacific lithosphere from magnetic anomaly inversion

1. 

Department of Marine Sciences, Zhejiang University, Zhoushan 316021, China

2. 

Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

3. 

Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, Chinese Earthquake Administration, Beijing 100085, China

Corresponding author: Chun-Feng Li, cfli@zju.edu.cn

Received Date: 2017-08-31
Web Publishing Date: 2018-01-01

Of the world's oceans, the Pacific has the most abundant distribution of seamount trails, oceanic plateaus and hot spots, and has the longest fracture zones. However, little is known of their thermal structures due to difficulties of heat flow measurement and interpretation, and in inferring thermal anomalies from low-resolution seismic velocities. Using recently published global magnetic models, we present the first independent constraint on Pacific geothermal state and mantle dynamics, by applying a fractal magnetization inversion model to magnetic anomaly data. Warm thermal anomalies are inferred for all known active hot spots, most seamount trails, some major fracture zones, and oceanic lithosphere between ~100 and ~140 Ma in age. While most Curie points are among the shallowest in the zone roughly bounded by the 20 Ma isochrons, abnormally deep Curie points are found along nearly all ridge crests in the Pacific, related to patchy, long-wavelength and large-amplitude magnetic anomalies that are most likely caused by prevailing magmatic or hydrothermal processes. Many large contrasts in the thermal evolution between the Pacific and North Atlantic support much stronger hydrothermal circulation occurring in Pacific lithospheres younger than ~60 Ma, which may have disguised from surface heat flow any deep thermal signatures of volcanic structures. Yet, at depths of the Curie points, our model argues for warmer Pacific lithosphere for crustal ages older than ~15 Ma, given a slightly higher spatial correlation of magnetization in the Pacific than in the North Atlantic.

Key words: Pacific, Curie depth, heat flow, seamount, oceanic plateau, magnetic anomaly

Adam, C., and Vidal, V. (2010). Mantle flow drives the subsidence of oceanic plates. Science, 328(5794), 83–85. https://doi.org/10.1126/science.1185906 doi: 10.1126/science.1185906.

Arkani-Hamed, J. (1989). Thermoviscous remanent magnetization of oceanic lithosphere inferred from its thermal evolution. J. Geophys. Res., 94(B12), 17421–17436. https://doi.org/10.1029/JB094iB12p17421 doi: 10.1029/JB094iB12p17421.

Ballmer M. D., Ito, G., van Hunen, J., and Tackley, P. J. (2010). Small-scale sublithospheric convection reconciles geochemistry and geochronology of 'superplume' volcanism in the western and south Pacific. Earth Planet. Sci. Lett., 290(1-2), 224–232. https://doi.org/10.1016/j.jpgl.2009.12.025 doi: 10.1016/j.jpgl.2009.12.025.

Bansal, A. R., Gabriel, G., Dimri, V. P., and Krawczyk, C. M. (2011). Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany. Geophysics, 76(3), L11-L22. https://doi.org/10.1190/1.3560017 doi: 10.1190/1.3560017.

Billen, M. I., and Stock, J. (2000). Morphology and origin of the Osbourn Trough. J. Geophys. Res., 105(B6), 13481–13489. https://doi.org/10.1029/2000JB900035 doi: 10.1029/2000JB900035.

Blakely, R. J. (1995). Potential Theory in Gravity and Magnetic Applications. Cambridge: Cambridge University Press.

Bleil, U., and Peterson, N. (1983). Variations in magnetization intensity and low temperature titanomagnetite oxidation of ocean floor basalts. Nature, 301(5899), 384–388. https://doi.org/10.1038/301384a0 doi: 10.1038/301384a0.

Bonatti, E., and Harrison, C. G. A. (1976). Hot lines in the Earth’s mantle. Nature, 263(5576), 402–404. https://doi.org/10.1038/263402a0 doi: 10.1038/263402a0.

Bouligand, C., Glen, J. M. G., and Blakely, R. J. (2009). Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. J. Geophys. Res., 114(B11), B11104, https://doi.org/10.1029/2009JB006494. doi: 10.1029/2009JB006494.

Carlson R. L., and Johnson, H. P. (1994). On modeling the thermal evolution of the oceanic upper mantle: An assessment of the cooling plate model. J. Geophys. Res., 99(B2), 3201–3214. https://doi.org/10.1029/93JB02696 doi: 10.1029/93JB02696.

Chen, Y. J., and Phipps Morgan, J. (1996). The effects of spreading rate, the magma budget, and the geometry of magma emplacement on the axial heat flux at mid-ocean ridges. J. Geophys. Res., 101(B5), 11475–11482. https://doi.org/10.1029/96JB00330 doi: 10.1029/96JB00330.

Chiozzi, P., Matsushima, J., Okubo, Y., Pasquale, V., and Verdoya, M. (2005). Curie-point depth from spectral analysis of magnetic data in central-southern Europe. Phys. Earth Planet. Inter., 152(4), 267–276. https://doi.org/10.1016/j.pepi.2005.04.005 doi: 10.1016/j.pepi.2005.04.005.

Clouard, V., and Bonneville, A. (2001). How many Pacific hotspots are fed by deep-mantle plumes?. Geology, 29(8), 695–698. https://doi.org/10.1130/0091-7613(2001)029<0695:HMPHAF>2.0.CO;2 doi: 10.1130/0091-7613(2001)029<0695:HMPHAF>2.0.CO;2.

Collette, B. J. (1974). Thermal contraction joints in a spreading seafloor as origin of fracture zones. Nature, 251(5473), 299–300. https://doi.org/10.1038/251299a0 doi: 10.1038/251299a0.

Cordell, L., Phillips, J. D., and Godson, R. H. (1993). USGS potential-field geophysical software for PC and compatible microcomputers. Lead. Edge, 12(4), 290. https://doi.org/10.1190/1.1436952 doi: 10.1190/1.1436952.

Davaille, A. (1999). Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature, 402(6763), 756–760. https://doi.org/10.1038/45461 doi: 10.1038/45461.

Davies, G. F. (1988). Ocean bathymetry and mantle convection: 2. Small scale flow. J. Geophys. Res., 93(B9), 10481–10488. https://doi.org/10.1029/JB093iB09p10481 doi: 10.1029/JB093iB09p10481.

Davis, A. S., Gray, L. B., Clague, D. A., and Hein, J. R. (2002). The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochem. Geophys. Geosyst., 3(3), 1–28. https://doi.org/10.1029/2001GC000190. doi: 10.1029/2001GC000190.

Downey, N. J., Stock, J. M., Clayton, R. W., and Cande, S. C. (2007). History of the Cretaceous Osbourn spreading center. J. Geophys. Res., 112(B4), B04102. https://doi.org/10.1029/2006JB004550. doi: 10.1029/2006JB004550.

Dyment, J., Choi, Y., Hamoudi, M., Lesur, V., and Thebault, E. (2015). Global equivalent magnetization of the oceanic lithosphere. Earth Planet Sci. Lett., 430, 54–65. https://doi.org/10.1016/j.jpgl.2015.08.002 doi: 10.1016/j.jpgl.2015.08.002.

Farrar, E., and Dixon, J. M. (1981). Early Tertiary rupture of the Pacific plate: 1700 km of dextral offset along the Emperor trough-Line Islands lineament. Earth Planet. Sci. Lett., 53(3), 307–322. https://doi.org/10.1016/0012-821X(81)90036-4 doi: 10.1016/0012-821X(81)90036-4.

Ferré, E. C., Friedman, S. A., Martín-Hernández, F., Feinberg, J. M., Conder, J. A., and Ionov, D. A. (2013). The magnetism of mantle xenoliths and potential implications for sub-Moho magnetic sources. Geophys. Res. Lett., 40(1), 105–110. https://doi.org/10.1029/2012GL054100. doi: 10.1029/2012GL054100.

Forsyth, D. W. (1977). The evolution of the upper mantle beneath mid-ocean ridges. Tectonophysics, 38(1-2), 89–118. https://doi.org/10.1016/0040-1951(77)90202-5 doi: 10.1016/0040-1951(77)90202-5.

Gee, J., Cande, S. C., Hildebrand, J. A., Donnelly, K., and Parker, R. L. (2000). Geomagnetic intensity variations over the past 780 kyr obtained from near‐seafloor magnetic anomalies. Nature, 408(6814), 827–832. https://doi.org/10.1038/35048513 doi: 10.1038/35048513.

Gomez, O., and Briais, A. (2000). Near-axis seamount distribution and its relationship with the segmentation of the East Pacific Rise and northern Pacific-Antarctic Ridge, 17°N-56°S. Earth Planet. Sci. Lett., 175(3-4), 233–246. https://doi.org/10.1016/S0012-821X(99)00305-2 doi: 10.1016/S0012-821X(99)00305-2.

Guyodo, Y., and Valet, J. P. (1999). Integration of volcanic and sedimentary records of paleointensity: Constraints imposed by irregular eruption rates. Geophys. Res. Lett., 26(24), 3669–3672. https://doi.org/10.1029/1999GL008422. doi: 10.1029/1999GL008422.

Hasenclever, J., Theissen-Krah, S., Rüpke, L. H., Morgan, J. P., Iyer, K., Petersen, S., and Devey, C. W. (2014). Hybrid shallow on-axis and deep off-axis hydrothermal circulation at fast-spreading ridges. Nature, 508(7497), 508–512. https://doi.org/10.1038/nature13174 doi: 10.1038/nature13174.

Hasterok, D. (2013). Global patterns and vigor of ventilated hydrothermal circulation through young seafloor. Earth Planet. Sci. Lett., 380, 12–20. https://doi.org/10.1016/j.jpgl.2013.08.016 doi: 10.1016/j.jpgl.2013.08.016.

Hasterok, D., Chapman, D. S., and Davis, E. E. (2011). Oceanic heat flow: Implications for global heat loss. Earth Planet. Sci. Lett., 311(3-4), 386–395. https://doi.org/10.1016/j.jpgl.2011.09.044 doi: 10.1016/j.jpgl.2011.09.044.

Heydolph, K., Murphy, D. T., Geldmacher, J., Romanova, I. V., Green, A., Hoernle, K., Weiss, D., and Mahoney, J. (2014). Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes. Lithos, 200-201, 49–63. https://doi.org/10.1016/j.lithos.2014.03.031 doi: 10.1016/j.lithos.2014.03.031.

Hilde, T. W. C., Isezaki, N., and Wageman, J. M. (1976). Mesozoic sea-floor spreading in the North Pacific. In G. H. Sutton, et al. (Eds.), The Geophysics of the Pacific Ocean Basin and Its Margin (pp. 205–226). Washington, D. C.: American Geophysical Union. https://doi.org/10.1029/GM019p0205

Hillier, J. K. (2007). Pacific seamount volcanism in space and time. Geophys. J. Int., 168(2), 877–889. https://doi.org/10.1111/j.1365-246X.2006.03250.x doi: 10.1111/j.1365-246X.2006.03250.x.

Hillier, J. K., and Watts, A. B. (2005). Relationship between depth and age in the North Pacific Ocean. J. Geophys. Res., 110(B2). https://doi.org/10.1029/2004JB003406. doi: 10.1029/2004JB003406.

Hoernle, K., Hauff, F., van den Bogaard, P., Werner, R., Mortimer, N., Geldmacher, J., Garbe-Schönberg, D., and Davy, B. (2010). Age and geochemistry of volcanic rocks from the Hikurangi and Manihiki oceanic plateaus. Geochim. Cosmochim. Acta, 74(24), 7196–7219. https://doi.org/10.1016/j.gca.2010.09.030 doi: 10.1016/j.gca.2010.09.030.

Huang, J. H., and Zhong, S. J. (2005). Sublithospheric small-scale convection and its implications for the residual topography at old ocean basins and the plate model. J. Geophys. Res., 110(B5). https://doi.org/10.1029/2004JB003153. doi: 10.1029/2004JB003153.

Ito, G., and Clift, P. D. (1998). Subsidence and growth of Pacific Cretaceous plateaus. Earth Planet. Sci. Lett., 161(1-4), 85–100. https://doi.org/10.1029/2004JB003153 doi: 10.1029/2004JB003153.

Johnson, H. P., and Atwater, T. (1977). A magnetic study of basalts from the mid-Atlantic ridge at 37°N. Bull. Geol. Soc. Amer., 88, 637–647. https://doi.org/10.1130/0016-7606(1977)88<637:MSOBFT>2.0.CO;2 doi: 10.1130/0016-7606(1977)88<637:MSOBFT>2.0.CO;2.

Kerr, A. C., and Mahoney, J. J. (2007). Oceanic plateaus: problematic plumes, potential paradigms. Chem. Geol., 241(3-4), 332–353. https://doi.org/10.1016/j.chemgeo.2007.01.019 doi: 10.1016/j.chemgeo.2007.01.019.

Kim, S.-S., and Wessel, P. (2011). New global seamount census from altimetry-derived gravity data. Geophys. J. Int., 186(2), 615–631. https://doi.org/10.1111/j.1365-246X.2011.05076.x doi: 10.1111/j.1365-246X.2011.05076.x.

King, S., and Ritsema, J. (2000). African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science, 290(5494), 1137–1140. https://doi.org/10.1126/science.290.5494.1137 doi: 10.1126/science.290.5494.1137.

Klitgord, K. D., Heustis, S. P., Mudie, J. D., and Parker, R. L. (1975). An analysis of near-bottom magnetic anomalies: sea-floor spreading and the magnetized layer. Geophys. J. Int., 43(2), 387–424. https://doi.org/10.1111/j.1365-246X.1975.tb00641.x doi: 10.1111/j.1365-246X.1975.tb00641.x.

Koppers, A. A. P., Morgan, J. P., Morgan, J. W., and Staudigel, H. (2001). Testing the fixed hotspot hypothesis using 40Ar/39Ar age progressions along seamount trails. Earth Planet. Sci. Lett., 185(3-4), 237–252. https://doi.org/10.1016/S0012-821X(00)00387-3 doi: 10.1016/S0012-821X(00)00387-3.

Koppers, A. A. P., Staudigel, H., Pringle, M. S., and Wijbrans, J. R. (2003). Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?. Geochem. Geophys. Geosyst., 4(10), 1089. https://doi.org/10.1029/2003GC000533. doi: 10.1029/2003GC000533.

Koppers, A. A. P., Staudigel, H., Wijbrans, J. R., and Pringle, M. S. (1998). The Magellan seamount trail: Implications for Cretaceous hotspot volcanism and absolute Pacific Plate motion. Earth Planet. Sci. Lett., 163(1-4), 53–68. https://doi.org/10.1016/S0012-821X(98)00175-7 doi: 10.1016/S0012-821X(98)00175-7.

Korenaga, T., and Korenaga, J. (2008). Subsidence of normal oceanic lithosphere, apparent thermal expansivity, and seafloor flattening. Earth Planet. Sci. Lett., 268(1-2), 41–51. https://doi.org/10.1016/j.jpgl.2007.12.022 doi: 10.1016/j.jpgl.2007.12.022.

Kruse, S. E., McCarthy, M. C., Brudzinskai, M. R., and Ranieri, M. E. (1996). Evolution and strength of Pacific fracture zones. J. Geophys. Res., 101(B6), 13731–13740. https://doi.org/10.1029/96JB00645 doi: 10.1029/96JB00645.

Li, C.-F. (2011). An integrated geodynamic model of the Nankai subduction zone and neighboring regions from geophysical inversion and modeling. J. Geodynamics, 51(1), 64–80. https://doi.org/10.1016/j.jog.2010.08.003 doi: 10.1016/j.jog.2010.08.003.

Li, C.-F., Chen, B., and Zhou, Z. (2009). Deep crustal structures of eastern China and adjacent seas revealed by magnetic data. Sci. China Ser. D: Earth Sci., 52(7), 984–993. https://doi.org/10.1007/s11430-009-0096-x doi: 10.1007/s11430-009-0096-x.

Li, C.-F., Lu, Y., and Wang, J. (2017). A global reference model of Curie-point depths based on EMAG2. Sci. Rep., 7, 45129. https://doi.org/10.1038/srep45129. doi: 10.1038/srep45129.

Li, C.-F., Shi, X. B., Zhou, Z. Y., Li, J. B., Geng, J. H., and Chen, B. (2010). Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophys. J. Int., 182(3), 1229–1247. https://doi.org/10.1111/j.1365-246X.2010.04702.x doi: 10.1111/j.1365-246X.2010.04702.x.

Li, C.-F., and Wang, J. (2016). Variations in Moho and Curie depths and heat flow in Eastern and Southeastern Asia. Mar. Geophys. Res., 37(1), 1–20. https://doi.org/10.1007/s11001-016-9265-4 doi: 10.1007/s11001-016-9265-4.

Li, C.-F., Wang, J., Lin, J., and Wang, T. T. 2013. Thermal evolution of the North Atlantic lithosphere: New constraints from magnetic anomaly inversion with a fractal magnetization model. Geochem. Geophys. Geosyst., 14(12), 5078–5105. https://doi.org/10.1002/2013GC004896 doi: 10.1002/2013GC004896.

Mahoney, J. J., Duncan, R. A., Tejada, M. L. G., Sager, W. W., and Bralower, T. J. (2005). Jurassic-Cretaceous boundary age and mid-ocean-ridge-type mantle source for Shatsky Rise. Geology, 33(3), 185–188. https://doi.org/10.1130/G21378.1 doi: 10.1130/G21378.1.

Mareschal, J. C., and Jaupart, C. (2004). Variations of surface heat flow and lithospheric thermal structure beneath the North American craton. Earth Planet. Sci. Lett., 223(1-2), 65–77. https://doi.org/10.1016/j.jpgl.2004.04.002 doi: 10.1016/j.jpgl.2004.04.002.

Maus, S., Barckhausen, U., Berkenbosch, H., Bournas, N., Brozena, J., Childers, V., Dostaler, F., Fairhead, J. D., Finn, C., … Caratori Tontini F. (2009). EMAG2: A 2-arc-minute resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne and marine magnetic measurements. Geochem. Geophys. Geosyst., 10(8), Q08005. https://doi.org/10.1029/2009GC002471. doi: 10.1029/2009GC002471.

Maus, S., Gordan, D., and Fairhead, D. (1997). Curie-temperature depth estimation using a self-similar magnetization model. Geophys. J. Int., 129(1), 163–168. https://doi.org/10.1111/j.1365-246X.1997.tb00945.x doi: 10.1111/j.1365-246X.1997.tb00945.x.

Maus, S., Sazonova, T., Hemant, K., Fairhead, J. D., and Ravat, D. (2007). National geophysical data center candidate for the world digital magnetic anomaly map. Geochem. Geophys. Geosyst., 8(6), Q06017. https://doi.org/10.1029/2007GC001643. doi: 10.1029/2007GC001643.

McNutt, M. K. (2002). Heat flow variations over the Hawaiian Swell controlled by near-surface processes, not plume properties. In E. Takahashi, et al. (Eds.), Hawaiian Volcanoes: Deep Underwater Perspectives (pp. 355–364). Washington, D.C.: American Geophysical Union. https://doi.org/10.1029/GM128p0365

McNutt, M. K., and Fischer, K. M. (1987). The south Pacific superswell. In B. Keating, et al. (Eds.), Seamounts, Islands, and Atolls (pp. 25–34). Washington, D.C.: American Geophysical Union. https://doi.org/10.1029/GM043p0025

Morgan, W. J. (1972). Deep mantle convection plumes and plate motions. AAPG Bull., 56(2), 203–213. https://doi.org/10.1306/819A3E50-16C5-11D7-8645000102C1865D doi: 10.1306/819A3E50-16C5-11D7-8645000102C1865D.

Müller, R. D., Sdrolias, M., Gaina, C., and Roest W. R. (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst., 9(4), Q04006. https://doi.org/10.1029/2007GC001743. doi: 10.1029/2007GC001743.

Nakanishi, M., Tamaki, K., and Kobayashi, K. (1989). Mesozoic magnetic anomaly lineations and seafloor spreading history of the northwestern Pacific. J. Geophys. Res., 94(B11), 15437–15462. https://doi.org/10.1029/JB094iB11p15437 doi: 10.1029/JB094iB11p15437.

O’Connor, J. M., Stoffers, P., and McWilliams, M. O. (1995). Time-space mapping of Easter Chain volcanism. Earth Planet. Sci. Lett., 136(3-4), 197–212. https://doi.org/10.1016/0012-821X(95)00176-D doi: 10.1016/0012-821X(95)00176-D.

Orwig, T. L., and Kroenke, L. W. (1980). Tectonics of the eastern central Pacific basin. Mar. Geol., 34(1-2), 29–43. https://doi.org/10.1016/0025-3227(80)90139-5 doi: 10.1016/0025-3227(80)90139-5.

Oufi, O., Cannat, M., and Horen, H. (2002). Magnetic properties of variably serpentinized abyssal peridotites. J. Geophys. Res., 107(B5), EPM3-1–EPM3-19. https://doi.org/10.1029/2001JB000549 doi: 10.1029/2001JB000549.

Parsons, B., and McKenzie, D. (1978). Mantle convection and the thermal structure of the plates. J. Geophys. Res., 83(B9), 4485–4496. https://doi.org/10.1029/JB083iB09p04485 doi: 10.1029/JB083iB09p04485.

Phillips, J. D. (1997). Potential-Field Geophysical Software for the PC, version 2.2. U. S. Geological Survey, Open-File Report, 97–725.

Phipps Morgan, J., and Smith, W. H. F. (1992). Flattening of the sea-floor depth-age curve as a response to asthenospheric flow. Nature, 359(6395), 524–527. https://doi.org/10.1038/359524a0 doi: 10.1038/359524a0.

Ravat, D., Pignatelli, A., Nicolosi, I., and Chiappini, M. (2007). A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys. J. Int., 169(2), 421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x doi: 10.1111/j.1365-246X.2007.03305.x.

Ray, J. S., Mahoney, J. J., Duncan, R. A., Ray, J., Wessel, P., and Naar, D. F. (2012). Chronology and geochemistry of lavas from the nazca ridge and easter seamount chain: an ~30 myr hotspot record. J. Petrol., 53(7), 1417–1448. https://doi.org/10.1093/petrology/egs021 doi: 10.1093/petrology/egs021.

Ritzwoller, M. H., Shapiro, N. M., and Zhong, S. J. 2004. Cooling history of the Pacific lithosphere. Earth Planet. Sci. Lett., 226(1-2), 69–84. https://doi.org/10.1016/j.jpgl.2004.07.032 doi: 10.1016/j.jpgl.2004.07.032.

Sager, W. W. (1992). Seamount age estimates from paleomagnetism and their implications for the history of volcanism on the pacific plate. In: B. H. Keating, et al. (Eds.), Geology and Offshore Mineral Resources of the Central Pacific Basin (vol. 14, pp. 21–37). New York, NY: Springer. https://doi.org/10.1007/978-1-4612-2896-7_3

Sandwell, D. T., and Fialko, Y. (2004). Warping and cracking of the Pacific Plate by thermal contraction. J. Geophys Res., 109(B10), B10411. https://doi.org/10.1029/2004JB003091. doi: 10.1029/2004JB003091.

Sandwell, D. T., Winterer, E. L., Mammerickx, J., Duncan, R. A., Lynch, M. A., Levitt, D. A., and Johnson C. L. (1995). Evidence for diffuse extension of the Pacific plate from Pukapuka ridges and cross-grain gravity lineations. J. Geophys. Res., 100(B8), 15087–15099. https://doi.org/10.1029/95JB00156 doi: 10.1029/95JB00156.

Schroeder, W. (1984). The empirical age-depth relation and depth anomalies in the Pacific Ocean basin. J. Geophys. Res., 89(B12), 9873–9883. https://doi.org/10.1029/JB089iB12p09873 doi: 10.1029/JB089iB12p09873.

Schubert, G., Froidevaux, C., and Yuen, D. A. (1976). Oceanic lithosphere and asthenosphere: thermal and mechanical structure. J. Geophys. Res., 81(20), 3525–3540. https://doi.org/10.1029/JB081i020p03525 doi: 10.1029/JB081i020p03525.

Sharp, W. D., and Clague, D. A. (2006). 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific Plate motion. Science, 313(5791), 1281–1284. https://doi.org/ 10.1126/science.1128489 doi: 10.1126/science.1128489.

Smith, W. H. F., and Sandwell, D. T. (1997). Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334), 1956–1962. https://doi.org/10.1126/science.277.5334.1956 doi: 10.1126/science.277.5334.1956.

Smoot, N. C., and King, R. E. (1997). The Darwin Rise demise: the western Pacific guyot heights trace the trans-Pacific Mendocino fracture zone. Geomorphology, 18(3-4), 223–235. https://doi.org/10.1016/S0169-555X(96)00032-3 doi: 10.1016/S0169-555X(96)00032-3.

Stein C. A., and Stein, S. (1992). A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391), 123–129. https://doi.org/10.1038/359123a0 doi: 10.1038/359123a0.

Stein, C., and Stein, S. (2003). Mantle plumes: heat flow near Iceland. Astron. Geophys., 44(1), 1.8–1.10. https://doi.org/10.1046/j.1468-4004.2003.44108.x doi: 10.1046/j.1468-4004.2003.44108.x.

Stein, C. A., and Abbott, D. H. (1991). Heat flow constraints on the South Pacific superswell. J. Geophys. Res., 96(B10), 16083–16100. https://doi.org/10.1029/91JB00774 doi: 10.1029/91JB00774.

Stein, C. A., and von Herzen, R. P. (2007). Potential effects of hydrothermal circulation and magmatism on heatflow at hotspot swells. In G. R. Foulger, et al. (Eds.), Plates, Plumes and Planetary Processes (pp. 261–274). USA: Geological Society of America Special Papers.

Stepashko, A. A. (2006). The cretaceous dynamics of the pacific plate and stages of magmatic activity in northeastern Asia. Geotectonics, 40(3), 225–235. https://doi.org/10.1134/S001685210603006X doi: 10.1134/S001685210603006X.

Tanaka, A., Okubo, Y., and Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306(3-4), 461–470. https://doi.org/10.1016/S0040-1951(99)00072-4 doi: 10.1016/S0040-1951(99)00072-4.

Tarduno, J. A., Sliter, W. V., Kroenke, L. W., Leckie, M., Mahoney, J. J., Musgrave, R., Storey, M., and Winterer, E. L. (1991). Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism. Science, 254(5030), 399–403. https://doi.org/10.1126/science.254.5030.399 doi: 10.1126/science.254.5030.399.

Taylor, B. (2006). The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth Planet. Sci. Lett., 241(3-4), 372–380. https://doi.org/10.1016/j.jpgl.2005.11.049 doi: 10.1016/j.jpgl.2005.11.049.

Timm, C., Hoernle, K., Werner, R., Hauff, F., van den Bogaard, P., Michael, P., Coffin, M. F., and Koppers, A. (2011). Age and geochemistry of the oceanic Manihiki Plateau, SW Pacific: new evidence for a plume origin. Earth Planet. Sci. Lett., 304(1-2), 135–146. https://doi.org/10.1016/j.jpgl.2011.01.025 doi: 10.1016/j.jpgl.2011.01.025.

Tominaga, M., Sager, W. W., Tivey, M. A., and Lee, S.-M. (2008). Deep-tow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior. J. Geophys. Res., 113(B7), B07110. https://doi.org/10.1029/2007JB005527. doi: 10.1029/2007JB005527.

Tucholke, B. E., Lin, J., and Kleinrock, M. C. (1998). Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid‐Atlantic Ridge. J. Geophys. Res., 103(B5), 9857–9866. https://doi.org/10.1029/98JB00167 doi: 10.1029/98JB00167.

Turcotte, D. L. 1974. Are transform faults thermal contraction cracks?. J. Geophys. Res., 79(17), 2573–2577. https://doi.org/10.1029/JB079i017p02573 doi: 10.1029/JB079i017p02573.

Vallier, T. L., Rea, D. K., Dean, W. E., Thiede, J., Adelseck, C. G. (1981). The geology of Hess Rise, central north Pacific Ocean. In J. Thiede, et al. (Eds.), Init. Repts. DSDP, 62 (pp. 1031–1072). Washington, D.C.: U. S. Govt. Printing Office.

von Herzen, R. P, Cordery, M. J, Detrick, R., and Fang, C. L. (1989). Heat flow and the thermal origin of hot spot swells: the Hawaiian swell revisited. J. Geophys. Res., 94(B10), 13 783–13 799. https://doi.org/10.1029/JB094iB10p13783 doi: 10.1029/JB094iB10p13783.

Wessel, P., and Smith, W. H. F. (1995). New version of the generic mapping tools. EOS, 76(33), 329. https://doi.org/10.1029/95EO00198 doi: 10.1029/95EO00198.

Windom, K. E., Seifert, K. E., and Vallier, T. L. (1981). Igneous evolution of Hess rise: Petrologic evidence from DSDP Leg 62. J. Geophys. Res., 86(B7), 6311–6322. https://doi.org/10.1029/JB086iB07p06311 doi: 10.1029/JB086iB07p06311.

Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
Catalog

Figures And Tables

Thermal structures of the Pacific lithosphere from magnetic anomaly inversion

Chun-Feng Li, Jian Wang