<

Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012

2018, 2(2): 112-119. doi: 10.26464/epp2018012

SPACE PHYSICS: SPACE WEATHER

A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle

1. 

CAS Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China

3. 

Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

4. 

Collaborative Innovation Center of Astronautical Science and Technology, Hefei 230026, China

Corresponding author: Bin Zhuang, zbzb@mail.ustc.edu.cn

Received Date: 2018-02-04
Web Publishing Date: 2018-03-01

The activities of geomagnetic storms are generally controlled by solar activities. The current solar cycle (SC) 24 is found to be mild; compared to SCs 19–23, the storm occurrence and size derived by averaging the occurrence number and Dst around the solar maximum are reduced by about 50–82% and 36–61%, respectively. We estimate separately, for SC 19 to 24, the repeat intervals between geomagnetic storms of specific Dst, based on fits of power-law and log-normal distributions to the storm data for each SC. Repeat intervals between super geomagnetic storms with Dst≤–250 nT are found to be 0.36–2.95 year(s) for SCs 19–23, but about 20 years based on the data for SC 24. We also estimate the repeat intervals between coronal mass ejections (CMEs) of specific speed (VCME) since CMEs are known to be the main drivers of intense storms and the related statistics may provide information about the potential occurrence of super geomagnetic storms from the location of the Sun. Our analysis finds that a CME with VCME≥1860 km/s may occur once per 3 and 5 months in SC 23 and 24, respectively. Based on a VCME-Dst relationship, such a fast CME may cause a storm with Dst=–250 nT if arriving at the Earth. By comparing the observed geomagnetic storms to storms expected to be caused by CMEs, we derive the probability of CME caused storms, which is dependent on VCME. For a CME faster than 1860 km/s, the probability of a CME caused storm with Dst≤–250 nT is about 1/5 for SC 23 or 1/25 for SC 24. All of the above results suggest that the likelihood of the occurrence of super geomagnetic storms is significantly reduced in a mild SC.

Key words: solar cycle, super geomagnetic storm, repeat interval

Astafyeva, E., Yasyukevich, Y., Maksikov, A., and Zhivetiev, I. (2014). Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems. Space Wea., 12(7), 508–525. https://doi.org/10.1002/2014SW001072 doi: 10.1002/2014SW001072.

Borovsky, J. E., and Denton, M. H. (2006). Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. Space Phys., 111(A7), A07S08. https://doi.org/10.1029/2005JA011447 doi: 10.1029/2005JA011447.

Brueckner, G. E., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, D. J., Moses, J. D., Socker, D. G., Dere, K. P., Lamy, P. L., … Eyles, C. J. (1995). The large angle spectroscopic coronagraph (LASCO). Solar Phys., 162(1–2), 357–402. https://doi.org/10.1007/BF00733434 doi: 10.1007/BF00733434.

Cameron, R. H., Jiang, J., and Schüssler, M. (2016). Solar cycle 25: another moderate cycle?. Astrophys. J., 823(2), L22. https://doi.org/10.3847/2041–8205/823/2/L22 doi: 10.3847/2041–8205/823/2/L22.

Cliver, E. W., and Crooker, N. U. (1993). A seasonal dependence for the geoeffectiveness of eruptive solar events. Solar Phys., 145(2), 347–357. https://doi.org/10.1007/BF00690661 doi: 10.1007/BF00690661.

Deminov, M. G., Nepomnyashchaya, E. V., and Obridko, V. N. (2016). Properties of solar activity and ionosphere for solar cycle 25. Geomagn. Aeronomy, 56(6), 742–749. https://doi.org/10.1134/S0016793216060086 doi: 10.1134/S0016793216060086.

Echer, E., Gonzalez, W. D., Guarnieri, F. L., Lago, A. D., and Vieira, L. E. A. (2005). Introduction to space weather. Adv. Space Res., 35(5), 855–865. https://doi.org/10.1016/j.asr.2005.02.098 doi: 10.1016/j.asr.2005.02.098.

Echer, E., Gonzalez, W. D., and Alves, M. V. (2006). On the geomagnetic effects of solar wind interplanetary magnetic structures. Space Wea., 4(6), 1–11. https://doi.org/10.1029/2005SW000200 doi: 10.1029/2005SW000200.

Echer, E., Gonzalez, W. D., and Tsurutani, B. T. (2011). Statistical studies of geomagnetic storms with peak Dst ≤ –50 nT from 1957 to 2008. J. Atmos. Solar Terr. Phys., 73(11–12), 1454–1459. https://doi.org/10.1016/j.jastp.2011.04.021 doi: 10.1016/j.jastp.2011.04.021.

Gonzalez, W. D., Gonzalez, A. L. C., and Tsurutani, B. T. (1990). Dual-peak solar cycle distribution of intense geomagnetic storms. Planet. Space Sci., 38(2), 181–187. https://doi.org/10.1016/0032-0633(90)90082-2 doi: 10.1016/0032-0633(90)90082-2.

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., Vasyliunas, V. M. (1994). What is a geomagnetic storm?. J. Geophys. Res., 99(A4), 5771–5792. https://doi.org/10.1029/93JA02867 doi: 10.1029/93JA02867.

Gonzalez, W. D., Echer, E., Clua-Gonzalez, A. L., and Tsurutani, B. T. (2007). Interplanetary origin of intense geomagnetic storms (Dst < –100 nT) during solar cycle 23. Geophys. Res. Lett., 34(6), L06101. https://doi.org/10.1029/2006GL028879 doi: 10.1029/2006GL028879.

Gonzalez, W. D., Echer, E., de Gonzalez, A. L. C., Tsurutani, B. T., and Lakhina, G. S. (2011). Extreme geomagnetic storms, recent Gleissberg cycles and space era-superintense storms. J. Atmos. Solar Terr. Phys., 73(11–12), 1447–1453. https://doi.org/10.1016/j.jastp.2010.07.023 doi: 10.1016/j.jastp.2010.07.023.

Gopalswamy, N., Akiyama, S., Yashiro, S., Michalek, G., and Lepping, R. P. (2008). Solar sources and geospace consequences of interplanetary magnetic clouds observed during solar cycle 23. J. Atmos. Solar Terr. Phys., 70(3–4), 245–253. https://doi.org/10.1016/j.jastp.2007.08.070 doi: 10.1016/j.jastp.2007.08.070.

Gopalswamy, N., Yashiro, S., Michalek, G., Stenborg, G., Vourlidas, A., Freeland, S., Howard, R. (2009). The SOHO/LASCO CME catalog. Earth Moon Planets, 104(1–4), 295–313. https://doi.org/10.1007/s11038-008-9282-7 doi: 10.1007/s11038-008-9282-7.

Gopalswamy, N. (2012). Energetic particle and other space weather events of solar cycle 24. In Proceedings of the 11th Annual Astrophysical Conference (Vol. 1500, pp. 14–19). Palm Springs, CA: American Institute of Physics. https://doi.org/10.1063/1.4768738

Gopalswamy, N., Akiyama, S., Yashiro, S., Xie, H., Mäkelä, P., Michalek, G. (2014). Anomalous expansion of coronal mass ejections during solar cycle 24 and its space weather implications. Geophys. Res. Lett., 41(8), 2673–2680. https://doi.org/10.1002/2014GL059858 doi: 10.1002/2014GL059858.

Gosling, J. T., McComas, D. J., Phillips, J. L., and Bame, S. J. (1991). Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections. J. Geophys. Res. Space Phys., 96(A5), 7831–7839. https://doi.org/10.1029/91JA00316 doi: 10.1029/91JA00316.

Hathaway, D. H., and Upton, L. A. (2016). Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J. Geophys. Res. Space Phys., 121(11), 10744–10753. https://doi.org/10.1002/2016JA023190 doi: 10.1002/2016JA023190.

Kane, R. P. (2005). How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms?. J. Geophys. Res. Space Phys., 110(A2), A02213. https://doi.org/10.1029/2004JA010799 doi: 10.1029/2004JA010799.

Kappenman, J. G. (2005). An overview of the impulsive geomagnetic field disturbances and power grid impacts associated with the violent Sun-Earth connection events of 29–31 October 2003 and a comparative evaluation with other contemporary storms. Space Wea., 3(8), s08C01. https://doi.org/10.1029/2004SW000128 doi: 10.1029/2004SW000128.

Kataoka, R., Shiota, D., Kilpua, E., and Keika, K. (2015). Pileup accident hypothesis of magnetic storm on 17 March 2015. Geophys. Res. Lett., 42(13), 5155–5161. https://doi.org/10.1002/2015GL064816 doi: 10.1002/2015GL064816.

Kataoka, R., and Ngwira, C. (2016). Extreme geomagnetically induced currents. Progr. Earth Planet. Sci., 3(1), 23. https://doi.org/10.1186/s40645-016-0101-x doi: 10.1186/s40645-016-0101-x.

Kilcik, A., Yurchyshyn, V. B., Abramenko, V., Goode, P. R., Gopalswamy, N., Ozguc, A., Rozelot, J. P. (2011). Maximum coronal mass ejection speed as an indicator of solar and geomagnetic activities. Astrophys. J., 727(1), 44. https://doi.org/10.1088/0004-637X/727/1/44 doi: 10.1088/0004-637X/727/1/44.

Le, G. M., Cai, Z. Y., Wang, H. N., Yin, Z. Q., and Li, P. (2013). Solar cycle distribution of major geomagnetic storms. Res. Astron. Astrophys., 13(6), 739–748. https://doi.org/10.1088/1674-4527/13/6/013 doi: 10.1088/1674-4527/13/6/013.

Love, J. J. (2012). Credible occurrence probabilities for extreme geophysical events: Earthquakes, volcanic eruptions, magnetic storms. Geophys. Res. Lett., 39(10), L10301. https://doi.org/10.1029/2012GL051431 doi: 10.1029/2012GL051431.

Love, J. J., Rigler, E. J., Pulkkinen, A., and Riley, P. (2015). On the lognormality of historical magnetic storm intensity statistics: Implications for extreme-event probabilities. Geophys. Res. Lett., 42(16), 6544–6553. https://doi.org/10.1002/2015GL064842 doi: 10.1002/2015GL064842.

Molinski, T. S., Feero, W. E., and Damsky, B. L. (2000). Shielding grids from solar storms [power system protection]. IEEE Spectr., 37(11), 55–60. https://doi.org/10.1109/6.880955 doi: 10.1109/6.880955.

Richardson, I. G., Cane, H. V., and Cliver, E. W. (2002). Sources of geomagnetic activity during nearly three solar cycles (1972–2000). J. Geophys. Res. Space Phys., 107(A8), 1187. https://doi.org/10.1029/2001JA000504 doi: 10.1029/2001JA000504.

Richardson, I. G. (2013). Geomagnetic activity during the rising phase of solar cycle 24. J. Space Wea. Space Climate, 3(11), A08. https://doi.org/10.1051/swsc/2013031 doi: 10.1051/swsc/2013031.

Riley, P., and Love, J. J. (2017). Extreme geomagnetic storms: Probabilistic forecasts and their uncertainties. Space Wea., 15(1), 53–64. https://doi.org/10.1002/2016SW001470 doi: 10.1002/2016SW001470.

Silbergleit, V. M. (1997). On the occurrence of the largest geomagnetic storms per solar cycle. J. Atmos. Solar Terr. Phys., 59(2), 259–262. https://doi.org/10.1016/S1364-6826(96)00002-8 doi: 10.1016/S1364-6826(96)00002-8.

Srivastava, N., and Venkatakrishnan, P. (2002). Relationship between CME speed and geomagnetic storm intensity. Geophys. Res. Lett., 29(9), 1-1–1-4. https://doi.org/10.1029/2001GL013597 doi: 10.1029/2001GL013597.

Tsubouchi, K., and Omura, Y. (2007). Long-term occurrence probabilities of intense geomagnetic storm events. Space Wea., 5(12), 1–12. https://doi.org/10.1029/2007SW000329 doi: 10.1029/2007SW000329.

Tsurutani, B. T., Gonzalez, W. D., Kamide, Y., and Arballo, J. K. (1997). Magnetic Storms. Washington DC: American Geophysical Union. https://doi.org/10.1029/GM098p00ix

Tsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., and Alex, S. (2003). The extreme magnetic storm of 1–2 September 1859. J. Geophys. Res. Space Phys., 108(A7), 1268. https://doi.org/10.1029/2002JA009504 doi: 10.1029/2002JA009504.

Wang, Y. M., and Colaninno, R. (2014). Is solar cycle 24 producing more coronal mass ejections than cycle 23?. Astrophys. J. Lett., 784(2), L27. https://doi.org/10.1088/2041-8205/784/2/L27 doi: 10.1088/2041-8205/784/2/L27.

Wang, Y. M., Zhang, Q. H., Liu, J. J., Shen, C. L., Shen, F., Yang, Z. C., Zic, T., Vrsnak, B., Webb, D. F., … Bin, Z. (2016). On the propagation of a geoeffective coronal mass ejection during 15–17 March 2015. J. Geophys. Res. Space Phys., 121(8), 7423–7434. https://doi.org/10.1002/2016JA022924 doi: 10.1002/2016JA022924.

Wood, B. E., Lean, J. L., McDonald, S. E., and Wang, Y. M. (2016). Comparative ionospheric impacts and solar origins of nine strong geomagnetic storms in 2010–2015. J. Geophys. Res. Space Phys., 121(6), 4938–4965. https://doi.org/10.1002/2015JA021953 doi: 10.1002/2015JA021953.

Yashiro, S., Gopalswamy, N., Michalek, G., Cyr, O. C. S., Plunkett, S. P., Rich, N. B., Howard, R. A. (2004). A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. Space Phys., 109(7), A07105. https://doi.org/10.1029/2003JA010282 doi: 10.1029/2003JA010282.

Yermolaev, Y. I., Lodkina, I. G., Nikolaeva, N. S., and Yermolaev, M. Y. (2013). Occurrence rate of extreme magnetic storms. J. Geophys. Res. Space Phys., 118(8), 4760–4765. https://doi.org/10.1002/jgra.50467 doi: 10.1002/jgra.50467.

Yue, C., and Zong, Q. G. (2011). Solar wind parameters and geomagnetic indices for four different interplanetary shock/ICME structures. J. Geophys. Res. Space Phys., 116(A12), A12201. https://doi.org/10.1029/2011JA017013 doi: 10.1029/2011JA017013.

[1]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[2]

Shun-Rong Zhang, Philip J. Erickson, Larisa P. Goncharenko, Anthea J. Coster, Nathaniel A. Frissell, 2017: Monitoring the geospace response to the Great American Solar Eclipse on 21 August 2017, Earth and Planetary Physics, 1, 72-76. doi: 10.26464/epp2017011

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
Catalog

Figures And Tables

A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle

Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu